
Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

3

Input/Output Systems

Processor needs to communicate with other
devices:

• Receive signals from sensors
• Send commands to actuators
• Or both (e.g., disks, audio, video devices)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

4

I/O Systems

Communication can happen in a variety of
ways:

• Binary parallel signal
• Analog
• Serial signals

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

5

An Example:
SICK Laser Range Finder

• Laser is scanned
horizontally

• Using phase information,
can infer the distance to the
nearest obstacle

• Resolution: ~.5 degrees, 1
cm

• Can handle full 180 degrees
at 20 Hz

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

11

Serial Communication
• Communicate a set of bytes using a single

signal line
• We do this by sending one bit at a time:

– The value of the first bit determines the state
of a signal line for a specified period of time

– Then, the value of the 2nd bit is used
– Etc.

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

12

Last Time

• Bit manipulation
• Serial communication

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

13

Today

• Serial Communication
• Circuit Building

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

14

Schedule

• Project 1: due today
• Homework 3: due in class on Tuesday
• Tuesday: midterm preparation
• Thursday: midterm

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

15

Serial Communication
The sender and receiver must have some

way of agreeing on when a specific bit is
being sent

• Typically, each side has a clock to tell it
when to write/read a bit

• In some cases, the sender will also send a
clock signal (on a separate line)

• In other cases, the sender/receiver will first
synchronize their clocks before transfer
begins

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

16

Asynchronous Serial
Communication

• The sender and receiver have their own
clocks, which they do not share

• This reduces the number of signal lines
• Bidirectional transmission, but the two

halves do not need to be synchronized in
time

But: we still need some way to agree that
data is valid. How?

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

17

Asynchronous Serial
Communication

How can the two sides agree that the data is
valid?

• Must both be operating at essentially the
same transmit/receive frequency

• A data byte is prefaced with a bit of
information that tells the receiver that data
is coming

• The receiver uses the arrival time of this
start bit to synchronize its clock

18

A Typical Data Frame

The start bit indicates that a byte is coming

19

A Typical Data Frame

The stop bits allow the receiver to
immediately check whether this is a valid
frame

• If not, the byte is thrown away

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

20

Data Frame Handling

Most of the time, we do not personally deal
with the data frame level. Instead, we rely
on:

• Hardware solutions: Universal
Asynchronous Receiver Transmitter
(UART)
– Very common in computing devices

• Software solutions in libraries

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

24

One Standard: RS232-C

Defines a logic encoding standard:
• “High” is encoded with a voltage of -5 to -15

(-12 to -13V is typical)
• “Low” is encoded with a voltage of 5 to 15

(12 to 13V is typical)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

30

RS232 on the Mega8

Our mega 8 has a Universal, Asynchronous
serial Receiver/Transmitter (UART)

• Handles all of the bit-level manipulation
• You only have to interact with it on the

byte level
• Uses 0V and 5V to encode “lows” and

“highs”
– Must convert if talking to an RS232C device

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

31

Mega8 UART C Interface
OUlib support:
fp = serial_init_buffered(0, 9600, 10, 10)

Initialize the port @9600 bits per second

getchar(): receive a character

serial_buffered_input_waiting(fp)
Is there a character in the buffer?

putchar(’a’): put a character out to the port

See the Atmel HOWTO: examples/serial

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

32

Character Representation

• A “char” is just an 8-bit number
• In some cases, we just interpret it

differently.
• But: we can still perform mathematical

operations on it

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

33

Character
Representation:

ASCII

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

34

Mega8
UART

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

35

Mega8
UART

• Transmit pin
(PD1)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

36

Mega8
UART

• Transmit pin
(PD1)

• Transmit
shift register

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

37

Writing a Byte to the Serial Port

putchar(‘A’);

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

38

Transmit

putchar(‘A’);
01000001

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

39

Transmit

When UART
is ready, the
buffer
contents are
copied to
the shift
register

01000001

01000001

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

40

Transmit

The least
significant bit
(LSB) of the
shift register
determines
the state of
the pin

01000001 1

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

41

Transmit

After a delay, the
UART shifts
the values to
the right

x = value doesn’t
matter

x0100000 0

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

42

Transmit

Next shift

xx010000 0

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

43

Transmit

Several shifts
later…

xxxxxx01 1

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

47

Receive

• Receive pin
(PD0)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

48

Receive

• Receive pin
(PD0)

• Receive
shift register

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

49

Receive

• “1” on the pin
• Shift register

initially in an
unknown
state xxxxxxxx 1

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

50

Receive

“1” is
presented to
the shift
register

xxxxxxxx 1

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

51

Receive

“1” is shifted
into the most
significant bit
(msb) of the
shift register 1xxxxxxx 1

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

52

Receive

Next bit is
shifted in

11xxxxxx 1

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

53

Receive

And the next
bit…

011xxxxx 0

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

54

Receive

And the 8th bit

01101011 0

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

55

Receive

Completed byte
is stored in
the UART
buffer

01101011 0

01101011

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

56

Reading a Byte from the Serial Port

int c;

c=getchar();

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

57

Receive

getchar()
retrieves this
byte from the
buffer

0

01101011

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

58

Reading a Byte from the Serial Port

int c;

c=getchar();

Note: getchar() “blocks” until a byte is
available

• Will only return with a value once one is
available to be returned

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

59

Processing Serial Input

serial_buffered_input_waiting(fp) tells us whether a byte
is ready to be read

int c;
while(1) {
if(serial_buffered_input_waiting(fp)) {

// A character is available for reading
c = getchar();
<do something with the character>

}
<do something else while waiting>

}

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

60

Mega8 UART C Interface

printf(): formatted output
scanf(): formatted input

See the LibC documentation or the AVR C
textbook

