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Today

• Binary addition
• Representing negative numbers
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Binary Addition

Consider the following binary numbers:

0 0 1 0 0 1 1 0
0 0 1 0 1 0 1 1

How do we add these numbers?
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Binary Addition

0 0 1 0 0 1 1 0
0 0 1 0 1 0 1 1

1
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Binary Addition

0 0 1 0 0 1 1 0
0 0 1 0 1 0 1 1

0 1
And we have a carry now!
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Binary Addition

0 0 1 0 0 1 1 0
0 0 1 0 1 0 1 1

0 0 1
And we have a carry again!
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Binary Addition

0 0 1 0 0 1 1 0
0 0 1 0 1 0 1 1

0 0 0 1
and again!
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Binary Addition

0 0 1 0 0 1 1 0
0 0 1 0 1 0 1 1

1 0 0 0 1
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Binary Addition

0 0 1 0 0 1 1 0
0 0 1 0 1 0 1 1

0 1 0 0 0 1
One more carry!
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Binary Addition

0 0 1 0 0 1 1 0
0 0 1 0 1 0 1 1

0 1 0 1 0 0 0 1
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Binary Addition

Behaves just like addition in decimal, but:
• We carry to the next digit any time the sum 

of the digits is 2 (decimal) or greater
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Negative Numbers

So far we have only talked about 
representing non-negative integers

• What can we add to our binary 
representation that will allow this?
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Representing Negative Numbers

One possibility:
• Add an extra bit that indicates the sign of 

the number
• We call this the “sign-magnitude”

representation
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Sign Magnitude Representation

+12 0   0 0 0 1 1 0 0
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Sign Magnitude Representation

+12 0   0 0 0 1 1 0 0

-12 1   0 0 0 1 1 0 0
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Sign Magnitude Representation

+12 0   0 0 0 1 1 0 0

-12 1   0 0 0 1 1 0 0

What is the problem with this approach?
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Sign Magnitude Representation

What is the problem with this approach?
• Some of the arithmetic operators that we 

have already developed do not do the right 
thing
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Sign Magnitude Representation

Operator problems:
• For example, we have already designed a 

counter (that implements an ‘increment’
operation)

-12 1   0 0 0 1 1 0 0
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Sign Magnitude Representation

Operator problems:

-12 1   0 0 0 1 1 0 0

Increment
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Sign Magnitude Representation

Operator problems:

-12 1   0 0 0 1 1 0 0

1   0 0 0 1 1 0 1

Increment
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Sign Magnitude Representation

Operator problems:

-12 1   0 0 0 1 1 0 0

-13 1   0 0 0 1 1 0 1

Increment

!!!!
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Representing Negative Numbers

An alternative:
• When taking the additive inverse of a 

number, invert all of the individual bits
• The leftmost bit still determines the sign of 

the number
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One’s Complement Representation

12 0   0 0 0 1 1 0 0

-12 1   1 1 1 0 0 1 1

Invert
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One’s Complement Representation

12 0   0 0 0 1 1 0 0

-12 1   1 1 1 0 0 1 1

1   1 1 1 0 1 0 0

Invert

Increment
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One’s Complement Representation

12 0   0 0 0 1 1 0 0

-12 1   1 1 1 0 0 1 1

-11 1   1 1 1 0 1 0 0

Invert

Increment
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One’s Complement Representation

What problems still exist?
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One’s Complement Representation

What problems still exist?
• We have two distinct representations of 

‘zero’:
0   0 0 0 0 0 0 0

1   0 0 0 0 0 0 0
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One’s Complement Representation

What problems still exist?
• We can’t directly add a positive and a 

negative number:
12 0   0 0 0 1 1 0 0
+ +
-5 1   1 1 1 1 0 1 0
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One’s Complement Representation

12 0   0 0 0 1 1 0 0
+ +
-5 1   1 1 1 1 0 1 0

0   0 0 0 0 1 1 0



Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

39

One’s Complement Representation

12 0   0 0 0 1 1 0 0
+ +
-5 1   1 1 1 1 0 1 0

6 0   0 0 0 0 1 1 0
!!!!
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Representing Negative Numbers

An alternative:
(a little intuition first)

0 0   0 0 0 0 0 0 0

Decrement
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Representing Negative Numbers

An alternative:
(a little intuition first)

0 0   0 0 0 0 0 0 0

1   1 1 1 1 1 1 1

Decrement
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Representing Negative Numbers

An alternative:
(a little intuition first)

0 0   0 0 0 0 0 0 0

-1 1   1 1 1 1 1 1 1

Decrement
Define this as 



Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

46

Representing Negative Numbers
A few more numbers:

3 0   0 0 0 0 0 1 1 
2 0   0 0 0 0 0 1 0
1 0   0 0 0 0 0 0 1
0 0   0 0 0 0 0 0 0
-1 1   1 1 1 1 1 1 1
-2 1   1 1 1 1 1 1 0
-3 1   1 1 1 1 1 0 1
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Two’s Complement Representation

In general, how do we take the additive 
inverse of a binary number?
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Two’s Complement Representation

In general, how do we take the additive 
inverse of a binary number?

• Invert each bit and then add ‘1’
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Two’s Complement Representation

Invert each bit and then add ‘1’

5 0   0 0 0 0 1 0 1

-5 1   1 1 1 1 0 1 1

Two’s complement
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Two’s Complement Representation
Now: let’s try adding a positive and a 

negative number:

12 0   0 0 0 1 1 0 0
+ +
-5 1   1 1 1 1 0 1 1
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Two’s Complement Representation
Now: let’s try adding a positive and a 

negative number:

12 0   0 0 0 1 1 0 0
+ +
-5 1   1 1 1 1 0 1 1

0   0 0 0 0 1 1 1
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Two’s Complement Representation
Now: let’s try adding a positive and a 

negative number:

12 0   0 0 0 1 1 0 0
+ +
-5 1   1 1 1 1 0 1 1

7 0   0 0 0 0 1 1 1
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Two’s Complement Representation

Two’s complement is used for integer 
representation in today’s processors
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Two’s Complement Representation

Two’s complement is used for integer 
representation in today’s processors

One oddity: we can represent one more 
negative number than we can positive 
numbers
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Implementing Subtraction

How do we implement a ‘subtraction’
operator?

(e.g.,  A – B)
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Implementing Subtraction

How do we implement a ‘subtraction’
operator?

(e.g.,  A – B)

• Take the 2s complement of B
• Then add this number to A


