Timing of Events

Suppose that we want produce a pulse on a
digital line that was exactly 500 ms in
length?

 \WWhat would the code look like?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

Timing of Events

// Assume 1t 1s pin O of port B

PORTB = PORTB | 1;
delay ms(500);
PORTB = PORTB & ~1;

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

Timing of Events

// Assume 1t 1s pin O of port B

PORTB = PORTB | 1;
delay ms(500);
PORTB = PORTB & ~1;

This will work, but why Is it undesirable?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

Timing of Events

This will work, but why Is it undesirable?

delay ms() Is implemented by using a
for() loop

 The microcontroller can’t do anything else
while It is looping

 Have to loop a precise number of times
(not always easy to do)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

Timing of Events: Another Example

Suppose we would want to measure the
width of a pulse. How would we
Implement this?

Andrew H. Fagg: Embedded Real- 5
Time Systems: Timers/Counters

Timing of Events: Another Example

How would we implement this?
// Wait for pin to go high
while(PINB & Ox1 == 0){};

// Now count until 1t goes low
for(counter = 0; PINB & Ox1; ++counter)

{
delay ms(1l);

ks
// Now: counter 1s the width of
// of the pulse In ms

Andrew H. Fagg: Embedded Real- 6
Time Systems: Timers/Counters

Timing of Events: Another Example

Again: the program cannot be doing
anything else while it is waiting

Andrew H. Fagg: Embedded Real- 7
Time Systems: Timers/Counters

Counter/Timers In the Mega8

The mega8 incorporates three counter/timer
devices in hardware. The mega2560 has
these + 3 more

These can:

 Be used to count the number of events
that have occurred (either external or
Internal)

e Act as a clock

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

Timer O

e Possible input sources:
— Pin TO (PD4)
— System clock
* Potentially divided by a “prescaler”
 8-bit counter

 When the counter turns over from OxFF to
0x0, an interrupt (an event) can be
generated (more on this next time)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

Generic Timer Implementation

’ P.re.SCaler: System Clock > Prescaler
divides clock f (ticks/sec) (ticks/tock)
freq Uency f f/2 72%) external input
; (some pin)

e Multiplexer:
selects one of
the Inputs to
drive the counter

» \Signal Selector
selection (multiplexer)

l

° COU nter: Counter Configuration Counter
increment on I I
low-to-high
transition of its data bus
iInput
Andrew H. Fagg: Embedded Real- 10

Time Systems: Timers/Counters

Timer O (and Timer 1)

Possible prescalers:
¢ 8

¢ 64

e 256

e 1024

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

11

Timing Example

Suppose:
e f=16MHz clock
e Prescaler of 1024

e We walit for the timer to count from O to
156

How long does this take?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

12

delay =

Timer 0 Example

1024156

=9948 15 =10 ms
16,000,000

Andrew H. Fagg: Embedded Real- 13
Time Systems: Timers/Counters

Timer 0 Code Example
timer0_config(TIMERO_PRE_1024); // Init: Prescale by 1024

timer0_set(0); // Set the counter to O

<Do something else for a while>
while(timer0_read() < 156) {
<Do something while waiting>

I3
// Break out of while loop after ~10 ms

See Atmel HOWTO for example code (timer_demo?2.c)
Andrew H. Fagg: Embedded Real- 14
Time Systems: Timers/Counters

Timer 0 Example

Advantage over delay ms():
e Can do other things while waiting

e Timing IS much more precise

— We no longer rely on a specific number of
Instructions to be executed

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

15

Timer 0 Example

One caution:

e “something else” cannot take very much
time

(we have a solution for this — coming soon!)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

16

Next Example

How do we time a delay of 100 usecs?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

17

Next Example

How do we time a delay of 100 usecs?

counts* prescale =.0001*clock _ freq
=.0001*16000000
=1600

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

18

Next Example

How do we time a delay of 100 usecs?

counts* prescale =.0001*clock _ freq
=.0001*16000000
=1600
200 * 8 =1600
OR
25 * 64 =1600

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

19

Timer 0 Code Example
timer0_config(TIMERO_PRE_8); // Init: Prescale by 1024

timer0_set(0); /[Set the timer to O

<Do something else for a while>
while(timer0_read() < 200) {
<Do something while waiting>

%

// Break out of while loop after ~100 us

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

20

Skip to interrupts...

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

21

Example 3.
Timing the Width of a Pulse
 Input: port B, pin 1
 How long is the pin high?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

22

Timing a Pulse Width: Our Original

Implementation

// Wait for pin to go high
while(PINB & Ox1 == 0){};

// Now count until 1t goes low
for(counter = 0; PINB & Ox1; ++counter)

{
delay ms(1l);

ks
// Now: counter 1s the width of
// of the pulse In ms

Andrew H. Fagg: Embedded Real- 23
Time Systems: Timers/Counters

Example: Timing a Pulse Width

// Init: Prescale by 1024
timerO_config(TIMERO PRE 1024);

// Wait for pin to go high
while(PINB & Ox2 == 0){
<Do something while waiting>

};
timerO_set(0); // Set the timer to O

while((PINB & 0x2) = 0) {
<Do something while waiting>

}:
pulse_width = timerO_read();

Andrew H. Fagg: Embedded Real- 24
Time Systems: Timers/Counters

Example: Timing a Pulse Width

What Is the “resolution” of pulse_width?

Andrew H. Fagg: Embedded Real- 25
Time Systems: Timers/Counters

Example: Timing a Pulse Width

What Is the “resolution” of pulse_width?
e Each “tock” Is:
1024

delay = =64
y 16,000,000 -

Andrew H. Fagg: Embedded Real- 26
Time Systems: Timers/Counters

Example: Timing a Pulse Width

So, with pulse_width tocks:

1024* pulse _width

delay =
16,000,000

=64* pulse _width /s

Andrew H. Fagg: Embedded Real- 27
Time Systems: Timers/Counters

Example: Timing a Pulse Width

// Init: Prescale by 1024 Note: the Ionger
timer0_config(TIMERO_PRE_1024); . ' L
something

// Wait for pin to go high takeS, the |al’ger
while(PINB & Ox2 == 0){ the possible

<Do something while waiting>

1- error in timing
timerO_set(0); // Set the timer to O

while((PINB & 0x2) = 0) {
<Do something while waiting>

}:
pulse_width = read_timer0();

Andrew H. Fagg: Embedded Real- 28
Time Systems: Timers/Counters

Other Timers Besides Timer O

Timers 1, 3, 4, 5:
e 16 bit counter
e Prescalers: 1, 8, 64, 256, 1024

Timer 2:
e 8 bit counter
 Prescalers: 1, 8, 32, 64, 128, 256, 1024

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

29

Note

See oulib documentation for the list of
possible prescalers for the timers

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

30

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

31

Interrupts

e Hardware mechanism that allows some
event to temporarily interrupt an ongoing
task

e The processor then executes a small
piece of code called: interrupt handler or
Interrupt service routine (ISR)

* Execution then continues with the original
program

Andrew H. Fagg: Embedded Real- 32
Time Systems: Timers/Counters

Some Sources of Interrupts
(Mega8)

External:
* An Input pin changes state
 The UART receives a byte on a serial input

Internal:
e A clock
e Processor reset

 The on-board analog-to-digital converter
completes its conversion

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

33

Interrupt Example

Suppose we are executing code
from your main program:

LDS R1 (A)<+— PC
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

34

An Example

Suppose we are executing code
from your main program:

LDS R1 (A)
LDS R2 (B)<— PC
CP R2,R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

35

An Example

Suppose we are executing code

from your main program:
LDS R1 (A)
LDS R2 (B)
CPR2, R1 - PC
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

36

An Example

An interrupt occurs (EXT INT1):

LDS R1 (A)

LDS R2 (B)

CP R2, Rl < PC

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3 screwt ragg: Embesed reat

Time Systems: Timers/Counters

37

An Example

Execute the Interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1

»BRGE 3w

LDS R3 (D) remember this location

ADD R3, R1
STS (D); R3 Andrew H. Fagg: Embedded Real-

Time Systems: Timers/Counters

38

An Example

Execute the Interrupt handler
EXT INTI1:

LDS R1 (A
A) PC > LDS R1 (G)

LDS R2 (V
P R2 R LDS R5 (L)

» BRGE 3 “ ADDR1, R2
LDS R3 (D) -
ADD R3. R1 RETI

STS (D)’ R3 Andrew H. Fagg: Embedded Real- 39

Time Systems: Timers/Counters

An Example

Execute the Interrupt handler

EXT INT1:
LDS R1 (A)

DSR2 (B) DS R1 (G)
CPR2 RI PC —»LDS R5 (L)
> ERGE 3 ADD R1, R2
LDS R3 (D) :
ADD R3, R1 RETI

STS (D)’ R3 Andrew H. Fagg: Embedded Real- 40

Time Systems: Timers/Counters

An Example

Execute the Interrupt handler

EXT INTI:
LDS R1 (A)

DSR2 (B) LDS R1 (G)
CP R2, R1 LDS RS (L)
> BRGE 3 PC —>ADD R1, R2
LDS R3 (D) :
ADD R3, R1 RETI

STS (D)’ R3 Andrew H. Fagg: Embedded Real- 41

Time Systems: Timers/Counters

An Example

Execute the Interrupt handler

EXT INT1:
LDS R1 (A)

DSR2 (B) LDS R1 (G)
CP R2, R1 LDS RS (L)
> ERGE 3 . _>ADD.R1, R2
LDS R3 (D) -
ADD R3, R1 RETI

STS (D)’ R3 Andrew H. Fagg: Embedded Real- 42

Time Systems: Timers/Counters

An Example

Return from interrupt

EXT INT1:
LDS R1 (A)

DSR2 (B) LDS R1 (G)
CP R2, R1 LDSR5 (L)
> BRGE 2 ADD R1, R2
LDS R3 (D) :
ADD R3, R1 PC—>RETI

STS (D)’ R3 Andrew H. Fagg: Embedded Real- 43

Time Systems: Timers/Counters

An Example

Return from interrupt

EXT INT1:

LDS R1 (A)

DS R2 (B) LDS R1 (G)

CP R2, R1 LDSR5 (L)
ADD R1, R2

» BRGE 3 <«— PC
DS R3 (D)\ :
ADD R3, R1 RETI
STS (D), R3 sewt. ragg: Embedded Real y

Time Systems: Timers/Counters

An Example

Continue execution with original

EXT INTI:
LDS R1 (A)

DSR2 (B) LDS R1 (G)
CP R2, R1 LDS RS (L)

SRGE 3 ADD R1, R2
LDS R3 (D) «— pC :

ADD R3, R1 RETI

STS (D)’ R3 Andrew H. Fagg: Embedded Real- 45

Time Systems: Timers/Counters

An Example

Continue execution with original

EXT INT1:
LDS R1 (A)
LDS R2 (B) LDS R1(G)
CP R2, R1 LDS RS (L)
SRGE 4 ADD R1, R2
LDS R3 (D) :

RETI

ADD R3, Rle«— PC
STS (D)’ R3 Andrew H. Fagg: Embedded Real- 46

Time Systems: Timers/Counters

Interrupt Routines

Generally a very small number of
Instructions

e \We want a quick response so the
processor can return to what it was
originally doing

* No delays, walts, or floating point
operations in the ISR...

Andrew H. Fagg: Embedded Real- 47
Time Systems: Timers/Counters

Timer O Interrupt

We can configure the timer to generate an
Interrupt every time that the timer’s
counter “rolls over” from OxFF to 0x00

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

48

Timer O Interrupt Example

Suppose:
e 16MHz clock
e Prescaler of 1024

How often is the interrupt generated?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

49

Timer 0 Example

Interval =

1024256

16,000,000

=16.384 ms

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

50

Timer O
Interrupt Service Routine (ISR)

An ISR Is a type of function that is called
when the interrupt is generated

ISR(TIMERO_OVF _vect) {
// Toggle the LED attached to bit O of port B
PORTB "= 1;

I3

What is the flash frequency?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

51

Timer O
Interrupt Service Routine (ISR)

ISR(TIMERO_OVF _vect) {
// Toggle the LED attached to bit O of port B
PORTB "= 1;

I3

What is the flash frequency?

16,000,000
1024*256* 2

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

=30.5176 Hz

frequency =

52

Example I
ISR Initialization in Main Program

/I Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timer0_config(TIMERO_PRE_1024);

/[Enable the timer interrupt
timerO_enable();

// Enable global interrupts
sei();

while(1) {
// Do something else

J

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

53

Timer O with Interrupts

This solution is particularly nice:

» “something else” does not have to worry
about timing at all

 PBO state Is altered asynchronously from
what Iis happening in the main program

Andrew H. Fagg: Embedded Real- 54
Time Systems: Timers/Counters

Next Example: Timer 0 Example Il

x
Interval = 10247256 =16.384 ms

16,000,000

How many interrupts do we need so that we
toggle the state of PBO every second?

Andrew H. Fagg: Embedded Real- 55
Time Systems: Timers/Counters

Timer 0 Example |

How many interrupts do we need so that we
toggle the state of PBO every second?

counts = 1000 ms =61.0352

16.384 ms

We will assume 61 Is close enough.

Andrew H. Fagg: Embedded Real- 56
Time Systems: Timers/Counters

Example Il: Interrupt Service
Routine (ISR)

ISR(TIMERO_OVF _vect) {

static uint8_t counter = 0;

++counter;

If(counter == 61) {
// Toggle output state every 61st interrupt:
/[This means: on for ~1 second and then off for ~1 sec
PORTB "= 1,
counter = 0;

See Atmel HOWTO for example code
(t| mer_demo .Aqaew H. Fagg: Embedded Real-

e Systems: Timers/Counters

57

Example Il: Interrupt Service
Routine (ISR)

uint8_t counter = 0;

ISR(TIMERO_OVF vect) {
++counter;
If(counter == 61) {
// Toggle output state every 61st interrupt:
/[This means: on for ~1 second and then off for ~1 sec
PORTB *=1;
counter = 0;
}
}

See Atmel HOWTO for example code
(t| mer_demo .Aqaew H. Fagg: Embedded Real-

e Systems: Timers/Counters

58

Example Il: Initialization
(same as before)

/I Initialize counter
counter = 0;

/I Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timerO_config(TIMERO_PRE_1024),

/[Enable the timer interrupt
timerO_enable();

// Enable global interrupts
sei();

while(1) {
// Do something else
I3

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

59

Timer 0 Example |

What is the flash frequency?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

60

Timer 0 Example |

What is the flash frequency?

16,000,000

frequency =
1024*256*61* 2

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

~ (0.5 Hz

61

o Skip to PWM

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

62

Interrupts and Timers

Timing can often involve a cascade of
multiple counters:

e prescaler (1 ... 1024)
e TimerO (256)
o Counter within an interrupt routine (any)

Each counter implements a frequency
division

Andrew H. Fagg: Embedded Real- 63
Time Systems: Timers/Counters

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

64

Information Encoding

Many different options for encoding
Information for transmission to/from other

devices:
 Parallel digital
o Serial digital (Project 2)
* Analog: use voltage to encode a value

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

65

Information Encoding

An alternative: pulse-width modulation
(PWM)

 Information is encoded in the time
between the rising and falling edge of a
pulse

Andrew H. Fagg: Embedded Real- 66
Time Systems: Timers/Counters

PWM Example:

RC Servo Motors

e 3 pins: power (red),
ground (black), and
command signal (white)

e Signal pin expects a
PWM signal

Andrew H. Fagg: Embedded Real- 67
Time Systems: Timers/Counters

PWM Example

20 ms
-

‘ -

-

l\

pulse width
determines motor position

Internal circuit translates pulse width into a goal
position:

0.5 ms: O degrees

1.5 ms: 180 degrees

Andrew H. Fagg: Embedded Real- 68
Time Systems: Timers/Counters

RC Servo Motors

 Internal potentiometer measures the
current orientation of the shatft

 Uses a Position Servo Controller: the
difference between current and
commanded shaft position determines
shaft velocity.

 Mechanical stops limit the range of motion

— These stops can be removed for unlimited
rotation

Andrew H. Fagg: Embedded Real- 69
Time Systems: Timers/Counters

PWM Example Il
Controlling LED Brightness
What is the relationship of current flow

through an LED and the rate of photon
emission?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

70

Controlling LED Brightness

What is the relationship of current flow
through an LED and the rate of photon
emission?

 They are linearly related (essentially)

Andrew H. Fagg: Embedded Real- 71
Time Systems: Timers/Counters

Controlling LED Brightness

Suppose we pulse an LED for a given period
of time with a digital signal: what is the
relationship between pulse width and
number of photons emitted?

Andrew H. Fagg: Embedded Real- 72
Time Systems: Timers/Counters

Controlling LED Brightness

Suppose we pulse an LED for a given period of
time with a digital signal: what is the relationship
between pulse width and number of photons
emitted?

e Again: they are linearly related (essentially)

 If the period is short enough, then the human
eye will not be able to detect the flashes

Andrew H. Fagg: Embedded Real- 73
Time Systems: Timers/Counters

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

74

Controlling LED Brightness

We need:

* To produce a periodic behavior, and

* A way to specify the pulse width (or the
duty cycle)

How do we implement this in code?

Andrew H. Fagg: Embedded Real- 75
Time Systems: Timers/Counters

Controlling LED Brightness

How do we implement this in code?

One way:

* Interrupt routine increments an 8-bit
counter

 \WWhen the counter is O, turn the LED on

e WWhen the counter reaches some
“duration”, turn the LED off

Andrew H. Fagg: Embedded Real- 76
Time Systems: Timers/Counters

Our Implementation |

volatile uint8 t duty = O;

ISR(TIMERO_OVF_vect)

{
static uiInt8 t counter = 255;
++ counter;
iT(counter == 0) PORTC |= 4;
1T(counter >= duty) PORTC &=
};

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

// bit 2 high

~4: // b2 low

i

Our Implementation Il

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

78

Another Implementation |

volatile uint8 t duration = O;

ISR(TIMERO_OVF_vect)
{

static uint8 t counter = 0;

++counter;

if(counter >= duration)
PORTB &= ~1;

else 1f(counter == 0)
PORTB |= 1;

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

79

Initialization Detalls

o Set up timer
 Enable interrupts

e Set duration in some way
— In this case, we will slowly increase it

What does this implementation look like?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

80

Initialization

int main(void) {

DDRC = 0x04;
PORTC =0;
duration = O;

/I Interrupt configuration
timerO_config(TIMERO_PRES8); // Prescaler =8

// Enable the timer interrupt
timerO_enable();

// Enable global interrupts
sei();

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

81

PWM Implementation

What is the resolution (how long Is one
Increment of “duration™)?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

82

PWM Implementation

What is the resolution (how long is one increment
of “duration™)?

 The timerO counter (8 bits) expires every 256
clock cycles

250

t =
16000000

=16 1S
(assuming a 16MHz clock)

Andrew H. Fagg: Embedded Real- 83
Time Systems: Timers/Counters

PWM Implementation

What is the period of the pulse?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

84

What is t

* The 8-
Interru

PWM Implementation

ne period of the pulse?
DIt software counter expires every 256

LS

. _ 256*256

= =4.096 ms
16000000

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

85

Doing “Something Else”

unsigned Int 1;
while(1l) {
for(n = 0; 1 < 256; ++1)
duration = 1;
delay ms(50);
}>
};

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

86

ISR Example Il

ISR(TIMERO_OVF _vect) {
// Toggle the LED attached to bit O of port B
PORTB =1,

int main(void){
timerO_config(TIMERO PRE_8);
timerO_enable();
sei();

while(1) {
// Do something else

} What is the flash frequency?

Andrew H. Fagg: Embedded Real- 87
Time Systems: Timers/Counters

Timer 0 Example lI

What is the flash frequency?

16,000,000
8*256%*2

frequency = ~ 3.9 KHz

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

88

ISR Example llI:
How about this case?

ISR(TIMERO_OVF _vect) {
// Toggle the LED attached to bit O of port B
PORTB =1,
timerQ_set(128);

I3

int main(void){
timerO_config(TIMERO _PRE_8);
timerO_enable();
sei();

while(1) {
/I Do something else What is the flash frequency?
I3

Andrew H. Fagg: Embedded Real- 89
Time Systems: Timers/Counters

Timer 0 Example lI

What is the flash frequency?

16,000,000
8*128%*2

frequency = ~ 7.8 KHz

Hint: key trick for project 3

Andrew H. Fagg: Embedded Real- 90
Time Systems: Timers/Counters

Timer O
Timer 1
Timer 2

3 Different Timers

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

91

Interrupt Service Routines

e Should be very short
— No “delays”
— No busy waiting

— Function calls from the ISR should be short
also

— Minimize looping
— No “printf()”

« Communication with the main program
using global variables

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

92

Interrupts, Shared Data
and Compiler Optimizations

 Compilers (including ours) will often
optimize code In order to minimize
execution time

 These optimizations often pose no
problems, but can be problematic in the
face of interrupts and shared data

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

93

Shared Data and Compiler
Optimizations

For example:
A=A+ 1;
C=B*A

Will result in ‘A’ being fetched from memory
once (into a general-purpose register) —
even though ‘A’ Is used twice

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

94

Shared Data and Compiler
Optimizations

Now consider:

while(1) {
PORTB = A;
+

What does the compiler do with this?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

95

Shared Data and Compiler
Optimizations

The compiler will assume that ‘A’ never changes.
This will result in code that looks something like this:

R1 = A; // Fetch value of A Into register 1
while(1l) {

PORTB = R1;
+

The compiler only fetches A from memory once!

Andrew H. Fagg: Embedded Real- 96
Time Systems: Timers/Counters

Shared Data and Compiler
Optimizations

This optimization is generally fine — but

consider the following interrupt routine:

ISR(TIMERO OVF vect){
A = PIND;

¥

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

97

Shared Data and Compiler
Optimizations

This optimization is generally fine — but
consider the following interrupt routine:

ISR(TIMERO OVF vect){
A = PIND;

¥

"he global variable ‘A’ is being changed!

The compiler has no way to anticipate this

Andrew H. Fagg: Embedded Real- 98
Time Systems: Timers/Counters

Shared Data and Compiler
Optimizations
The fix: the programmer must tell the

compiler that it is not allowed to assume
that a memory location is not changing

e This Is accomplished when we declare the
global variable:

volatile uint8_t A;

Andrew H. Fagg: Embedded Real- 99
Time Systems: Timers/Counters

Andrew H. Fagg: Embedded Real- 100
Time Systems: Timers/Counters

Pulse-Width Modulation in Hardware

 The Atmel Mega processors will perform a
wide-range of timing functions in hardware

e This includes the generation of pulse-width
modulated signals

* Once configured, your main program need
only to set the duty cycle of the PWM
signal

Andrew H. Fagg: Embedded Real- 101
Time Systems: Timers/Counters

Pulse-Width Modulation in Hardware

o Configuration includes:
— Signal frequency (through the prescalers)
— Signal polarity (high then low or vice-versa)
— Resolution for specifying the duty cycle

e Use:

— You need only specify changes to the duty
cycle

Andrew H. Fagg: Embedded Real- 102
Time Systems: Timers/Counters

PWM on the Atmel Mega2560s

Timers 1, 3, 4, 5: each have 3 PWM output channels
associated with them (known as A, B, and C)

For our example here:

e Use 10 bits of the 16 available with the counter

e Counter counts from 0 to 1023, and then back to O
e Output goes high at 0

e Output goes low at specified count
— Specified by the “output compare” register

Andrew H. Fagg: Embedded Real- 103
Time Systems: Timers/Counters

Initialization Example (Timer 4)

int main(void){
// The timer 4 channel A pin is labeled “0OC4A” on the Arduino
// circuilt diagram
DDRH = 0Ox8;

// tocks/sec = 2,000,000/sec (with a 16,000,000 ticks/sec clock)
timerd _contig(TIMER4 PRE_8);

// Configure for 10-bit PWM
timer4 output compare_ config(TIMER4_OUTPUT _COMPARE_CONFIG_PWM_F_10);

// Configure timer 4, channel A for PWM: high then low
timer4 _compare_ output A mode set(TIMER16B_COMPARE_OUTPUT_MODE_ CLEAR);

Andrew H. Fagg: Embedded Real- 104
Time Systems: Timers/Counters

Use Example

intlée t 1;

// Loop forever
while(l) {

// Slowly increase the duty cycle on channel A
for(i=0; i < 1024; ++i) {
timer4_output compare A set(1);
delay ms(1);
}:

// Slowly bring the duty cycle back to zero

for(1=1023; 1 > 0; —--1) {
timer4d_output compare A set(1);
delay ms(1);

}:

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

105

See examples 2560/pwm for more details

Andrew H. Fagg: Embedded Real- 106
Time Systems: Timers/Counters

