
Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

1

Control of Time-Varying Behavior

Proportional-Derivative (PD) controller: react
to the immediate sensory inputs

• E.g.: yaw control
• Need a reference (or “desired”) heading

Where does this reference come from?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

2

Control of Time-Varying Behavior

Where does the reference come from?
• Determined by what our task is (or

subtask)

• E.g.: at the current state of a mission, it
may be appropriate to orient the craft in a
particular direction so that it can fly back
“home”

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

3

Control of Time-Varying Behavior

Can often express a “mission” in terms of a
sequence of sub-tasks (or a plan)

• But: we also want to handle contingencies
when they arrive

Finite state machines are a simple way of
expressing such plans and contingencies

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

4

Finite State Machines (FSMs)

Pure FSM form is composed of:
• A set of states
• A set of possible inputs (or events)
• A set of possible outputs (or actions)
• A transition function:

– Given the current state and an input: defines
the output and the next state

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

5

Finite State Machines (FSMs)

States:
• Represent all possible “situations” that

must be distinguished
• At any given time, the system is in exactly

one of the states
• There is a finite number of these states

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

6

Finite State Machines (FSMs)

An example: a counter
• States: ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

7

Finite State Machines (FSMs)

An example: a counter
• States: the different combinations of the

digits: 000, 001, 010, … 111

• Inputs: ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

8

Finite State Machines (FSMs)

An example: a counter
• Inputs:

– Really only one: the event associated with the
clock transitioning from high to low

– We will call this “C”

• Outputs: ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

9

Finite State Machines (FSMs)

An example: a counter
• Outputs: same as the set of states

• Transition function: ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

10

Finite State Machines (FSMs)

An example: a counter
• Transition function:

– On the clock event, transition to the next
highest value

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

11

FSM Example:
Synchronous Counter

A Graphical Representation:

000

001
010

011

100

101
110

111

A set of states

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

12

FSM Example:
Synchronous Counter

A transition

000

001
010

011

100

101
110

111

C/001

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

13

FSM Example:
Synchronous Counter

A transition

000

001
010

011

100

101
110

111

C/001

The event

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

14

FSM Example:
Synchronous Counter

A transition

000

001
010

011

100

101
110

111

C/001

The output

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

15

FSM Example:
Synchronous Counter

The next transition

000

001
010

011

100

101
110

111

C/010

C/001

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

16

FSM Example:
Synchronous Counter

The next transition

000

001
010

011

100

101
110

111

C/010 C/011

C/001

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

17

FSM Example:
Synchronous Counter

The full transition set

000

001
010

011

100

101
110

111

C/010 C/011

C/100

C/101

C/110C/111

C/000

C/001

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

18

FSM Example:
Synchronous Counter

Initial condition

000

001
010

011

100

101
110

111

C/010 C/011
x/000

C/101

C/110C/111

C/000

C/001

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

19

Example II: An Up/Down Counter

Suppose we have two events (instead of
one): Count up and count down

• How does this change our state transition
diagram?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

20

Example II: An Up/Down Counter

From state 000, there are now two possible
transitions

000

001
010

011

100

101
110

111

U/001

D/111

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

21

Example II: An Up/Down Counter

Likewise for state 001…

000

001
010

011

100

101
110

111

U/001
D/000

D/111

U/010

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

22

Example II: An Up/Down Counter

The full transition set

000

001
010

011

100

101
110

111

U/010 U/011

U/100

U/101

U/110U/111

U/000

U/001
D/000

D/001 D/010

D/011

D/100

D/101
D/110

D/111

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

26

FSMs and Control

How do we relate FSMs to Control?
• States are ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

27

FSMs and Control

How do we relate FSMs to Control?
• States are our memory of recent inputs

• Inputs are ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

28

FSMs and Control

How do we relate FSMs to Control?
• States are our memory of recent inputs

• Inputs are some processed representation
of what the sensors are observing

• Outputs are ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

29

FSMs and Control
How do we relate FSMs to Control?
• States are our memory of recent inputs

• Inputs are some processed representation
of what the sensors are observing

• Outputs are the control actions
– These are typically “high level” actions: e.g.,

set the goal orientation to 125 degrees

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

30

FSMs: A Control Example

Suppose we have a vending machine:
• Accepts dimes and nickels
• Will dispense one of two things once $.20

has been entered: Jolt or Buzz Water
– The “user” requests one of these by pressing

a button
• Ignores select if < $.20 has been entered
• Immediately returns any coins above $.20

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

31

Vending Machine FSM

What are the states?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

32

Vending Machine FSM

What are the states?
• $0
• $.05
• $.10
• $.15
• $.20

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

33

Vending Machine FSM

What are the inputs/events?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

34

Vending Machine FSM

What are the inputs/events?
• Input nickel (N)
• Input dime (D)
• Select Jolt (J)
• Select Buzz Water (BW)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

35

Vending Machine FSM

What are the outputs?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

36

Vending Machine FSM

What are the outputs?
• Return nickel (RN)
• Return dime (RD)
• Dispense Jolt (DJ)
• Dispense Buzz Water (DBW)
• Nothing (Z)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

37

Vending Machine Design

What is the initial state?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

38

Vending Machine Design

What is the initial state?
• S = $0

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

39

Vending Machine Design

What can happen from
S = $0?

OutputNext
State

Event

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

40

Vending Machine Design

What can happen from
S = $0?

What does this part of
the diagram look like?

Z

Z

Z

Z

Output

$0BW

$0J

$.10D

$.05N

Next
State

Event

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

41

Vending Machine Design

A piece of the state diagram:

$0

$.05
N/Z

x/Z

$.10
D/ZJ/Z

BW/Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

42

Vending Machine Design

What can happen from
S = $0.05?

OutputNext
State

Event

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

43

Vending Machine Design

What can happen from
S = $0.05?

What does the modified
diagram look like?

Z

Z

Z

Z

Output

$.05BW

$.05J

$.15D

$.10N

Next
State

Event

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

44

Vending Machine Design
A piece of the state diagram:

$0

$.05
N/Z

x/Z

$.10
D/ZJ/Z

BW/Z

$.15
D/Z

N/Z

J/Z
BW/Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

45

Vending Machine Design

What can happen from
S = $0.10?

OutputNext
State

Event

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

46

Vending Machine Design

What can happen from
S = $0.10?

Z

Z

Z

Z

Output

$.10BW

$.10J

$.20D

$.15N

Next
State

Event

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

47

Vending Machine Design
A piece of the state diagram:

$0

$.05
N/Z

x/Z

$.10
D/ZJ/Z

BW/Z

$.15
D/Z

N/Z

J/Z
BW/Z

$.20

J/Z
BW/Z

N/Z

D/Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

48

Vending Machine Design

What can happen from
S = $0.15?

OutputNext
State

Event

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

49

Vending Machine Design

What can happen from
S = $0.15?

Z

Z

RN

Z

Output

$.15BW

$.15J

$.20D

$.20N

Next
State

Event

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

50

Vending Machine Design
A piece of the state diagram:

$0

$.05
N/Z

x/Z

$.10
D/ZJ/Z

BW/Z

$.15
D/Z

N/Z

J/Z
BW/Z

$.20

J/Z
BW/Z

N/Z

D/Z

J/Z
BW/Z

N/Z
D/RN

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

51

Vending Machine Design

Finally: what can
happen from S =
$0.20?

OutputNext
State

Event

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

52

Vending Machine Design

Finally, what can
happen from S =
$0.20?

DBW

DJ

RD

RN

Output

$0BW

$0J

$.20D

$.20N

Next
State

Event

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

53

Vending Machine Design
The complete state diagram:

$0

$.05
N/Z

x/Z

$.10
D/ZJ/Z

BW/Z

$.15
D/Z

N/Z

J/Z
BW/Z

$.20

J/Z
BW/Z

N/Z

D/Z

J/Z
BW/Z

N/Z
D/RN N/RN

D/RD

J / DJ
BW / DBW

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

56

Last Time

$0

$.05
N/Z

x/Z

$.10
D/ZJ/Z

BW/Z

$.15
D/Z

N/Z

J/Z
BW/Z

$.20

J/Z
BW/Z

N/Z

D/Z

J/Z
BW/Z

N/Z
D/RN N/RN

D/RD

J / DJ
BW / DBW

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

57

FSMs and Control

How do we relate FSMs to Control?
• States are ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

58

FSMs and Control

How do we relate FSMs to Control?
• States are our memory of recent inputs

• Inputs are ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

59

FSMs and Control

How do we relate FSMs to Control?
• States are our memory of recent inputs

• Inputs are some processed representation
of what the sensors are observing

• Outputs are ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

60

FSMs and Control

How do we relate FSMs to Control?
• States are our memory of recent inputs

• Inputs are some processed representation
of what the sensors are observing

• Outputs are the control actions

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

61

A Robot Control Example

Consider the following task:
• The robot is to move toward the first

beacon that it “sees”
• The robot searches for a beacon in the

following order: right, left, front

What is the FSM representation?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

62

Robot Control Example II
Consider the following task:
• The robot must lift off to some altitude
• Translate to some location
• Take pictures
• Return to base
• Land
• At any time: a detected failure should cause the

craft to land

What is the FSM representation?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

63

FSMs As Controllers
• Need code that translates sensory inputs

into FSM events
• An FSM output can require an arbitrary

amount of time
– We will often implement this control action as

a separate function call
• Control actions will not necessarily be

fixed (but could be a function of sensory
input)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

64

FSMs As Controllers (cont)

• We might choose to leave some events
out of the implementation
– Only some events may be relevant to certain

states
• When in a state, the FSM may also issue

control actions (even when a new event
has not arrived)
– Again, this may be implemented as a function

call

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

65

FSMs in C
int state = 0; // Initial state
while(1) {

<do some processing of the sensory inputs>
switch(state) {

case 0:
<handle state 0>
break;

case 1:
<handle state 1>
break;

case 2: …
}

}

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

86

FSMs in C (some other
possibilities)

int state = 0; // Initial state
while(1) {

<do some processing of the sensory inputs>
switch(state) {

case 0:
<handle state 0>
break;

:
default:

<handle default case>
break;

}
<do some low-level control>

}

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

89

Handling Each State

• You will need to provide code that handles
the event processing for each state

• Specifically:
– You need to handle each event that can occur
– For each event, you must specify:

• What action is to be taken
• What the next state is

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

90

Handling Each State

In our vending machine example:
• Events are easy to describe (only a few

things can happen)
• It is convenient in this case to also “switch”

on the event

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

91

FSMs in C: Processing for
Individual States

case STATE_10cents:
// $.10 has already been deposited
switch(event) {

case EVENT_NICKEL: // Nickel
state = STATE_15cents; // Transition to $.15
break;

case EVENT_DIME: // Dime
state = STATE_20cents; // Transition to $.2
break;

case EVENT_JOLT: // Select Jolt
case EVENT_BUZZ: // Select Buzzwater

display_NOT_ENOUGH();
break;

case EVENT_NONE: // No event
break; // Do nothing

};
break;

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

96

Handling Each State

Some events do not fall neatly into one of
several categories

• This precludes the use of the “switch”
construct

• For example: an event that occurs when
our hovercraft reaches a goal orientation

• For these continuous situations, we
typically use an “if” construct …

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

97

FSMs in C
int state = 0; // Initial state
while(1) {

<do some processing of the sensory inputs>
switch(state) {

case 0:
<handle state 0>
break;

case 1:
<handle state 1>
break;

case 2: …
}

}

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

98

FSMs in C: Processing for
Individual States

:
:
case STATE_MISSION_PHASE_3:

if(heading_error < 100 &&
heading_error > -100)

{
// Accelerate forward!
duty_forward = 126;
state = STATE_MISSION_PHASE_4;

};
break;

:
:

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

99

FSMs in C: Processing for
Individual States

:
case STATE_MISSION_PHASE_4:

if(distance_left < 200 &&
distance_right < 200)

{
// Brake!
forward_thrust = 0;
duty_middle = 127;
middle_thrust_dir(0);
state = STATE_MISSION_PHASE_5;
counter = 0; // Reset the clock

};
break;

:

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

100

FSMs in C: Processing for
Individual States

:
case STATE_MISSION_PHASE_5:

if(counter > 20)
{

// One second has gone by since we
// started the brake: Stop the brake

duty_middle = 0;
state = STATE_MISSION_PHASE_6;

};
break;

:

NOTE: counter is being incremented once per control
cycle

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

101

A Note on “Style” in C

• The numbers that we assigned to the
different states are arbitrary (and at first
glance, hard to interpret)

• Instead, we can define constant strings
that have some meaning

• Replace: 0, 1, 2, 3, 4, 5
• With: STATE_00, STATE_05, STATE_10,

STATE_15, STATE_20

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

102

A Note on “Style” in C

In C, this is done by adding some
definitions to the beginning of your
program (either in the .c file or the .h
file):

#define STATE_00cents 0
#define STATE_05cents 1
#define STATE_10cents 2
#define STATE_15cents 3
#define STATE_20cents 4

