
Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

1

Components of a Microprocessor

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

2

Components of a Microprocessor

• Memory:
– Storage of data
– Storage of a program
– Either can be temporary or “permanent”

storage
• Registers: small, fast memories

– General purpose: store arbitrary data
– Special purpose: used to control the

processor

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

3

Components of a Microprocessor

• Instruction decoder:
– Translates current program instruction into a

set of control signals
• Arithmetic logical unit:

– Performs both arithmetic and logical
operations on data

• Input/output control modules

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

4

Components of a Microprocessor

• Many of these components must
exchange data with one-another

• It is common to use a ‘bus’ for this
exchange

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

5

Buses
• In the simplest form, a bus is a single wire
• Many different components can be

attached to the bus
• Any component can take input from the

bus or place information on the bus

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

6

Buses

• At most one component may write to the
bus at any one time

• In a microprocessor, which component is
allowed to write is usually determined by
the code that is currently executing

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

7

Atmel Mega2560 Architecture

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

8

Atmel Mega2560

8-bit data bus
• Primary

mechanism
for data
exchange

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

9

32 general
purpose
registers

• 8 bits wide
• 3 pairs of

registers can
be combined
to give us 16
bit registers

Atmel Mega2560

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

10

Special
purpose
registers

• Control of the
internals of
the
processor

Atmel Mega2560

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

11

Random Access
Memory (RAM)

• 8 KByte in size

Atmel Mega2560

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

12

Random Access
Memory (RAM)

• 8 KByte in size

Note: in high-end
processors,
RAM is a
separate
component

Atmel Mega2560

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

13

Flash (EEPROM)
• Program

storage
• 256 KByte in

size

Atmel Mega2560

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

14

Flash (EEPROM)
• In this and many

microcontrollers,
program and
data storage is
separate

• Not the case in
our general
purpose
computers

Atmel Mega2560

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

15

EEPROM
• Permanent

data storage

Atmel Mega2560

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

16

Arithmetic
Logical Unit

• Data inputs
from registers

• Control inputs
not shown
(derived from
instruction
decoder)

Atmel Mega2560

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

17

Collections of Bits

• 8 bits: a “byte”
• 4 bits: a “nybble”

• “words”: can be 8, 16, or 32 bits
(depending on the processor)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

18

Collections of Bits

• A data bus typically captures a set of bits
simultaneously

• Need one wire for each of these bits
• In the Atmel Mega2560 (and Mega8): the

data bus is 8-bits “wide”
• In your home machines: 32 or 64 bits

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

19

Memory

What are the essential components of a
memory?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

20

A Memory Abstraction

• We think of memory as an array of
elements – each with its own address

• Each element contains a value
– It is most common for the values to by 8-bits

wide (so a byte)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

21

A Memory Abstraction

• We think of memory as an array of
elements – each with its own address

• Each element contains a value
– It is most common for the values to by 8-bits

wide (so a byte)

Address

Stored value

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

22

Memory Operations

Read
foo(A+5);

reads the value from the memory location
referenced by the variable ‘A’ and adds
the value to 5. The result is passed to a
function called foo();

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

23

Memory Operations

Write
A = 5;

writes the value 5 into the memory location
referenced by ‘A’

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

24

Types of Memory

Random Access Memory (RAM)
• Computer can change state of this

memory at any time
• Once power is lost, we lose the contents

of the memory

• This will be our data storage on our
microcontrollers

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

25

Types of Memory

Read Only Memory (ROM)
• Computer cannot arbitrarily change state

of this memory
• When power is lost, the contents are

maintained

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

26

Types of Memory

Erasable/Programmable ROM (EPROM)
• State can be changed under very specific

conditions (usually not when connected to
a computer)

• Our microcontrollers have an Electrically
Erasable/Programmable ROM (EEPROM)
for program storage

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

62

Machine-Level Programs

Machine-level programs are stored as
sequences of atomic machine instructions

• Stored in program memory
• Execution is generally sequential

(instructions are executed in order)
• But – with occasional “jumps” to other

locations in memory

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

63

Types of Instructions

• Memory operations: transfer data values
between memory and the internal registers

• Mathematical operations: ADD,
SUBTRACT, MULT, AND, etc.

• Tests: value == 0, value > 0, etc.
• Program flow: jump to a new location,

jump conditionally (e.g., if the last test was
true)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

64

Program
counter

• Address of
currently
executing
instruction

Mega2560: Decoding Instructions

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

65

Instruction
register

• Stores the
machine-level
instruction
currently being
executed

Mega2560: Decoding Instructions

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

66

Instruction
decoder

• Translates
current
instruction into
control signals
for the rest of
the processor

Atmel Mega2560

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

75

Some Mega2560 Memory Operations

LDS Rd, k
• Load SRAM memory location k into

register Rd
• Rd <- (k)

STS Rd, k
• Store value of Rd into SRAM location k
• (k) <- Rd

We refer to this as
“Assembly Language”

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

76

Load SRAM Value to Register

LDS Rd, k

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

77

Store Register Value to SRAM

STS Rd, k

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

79

Some Mega2560 Arithmetic and
Logical Instructions

ADD Rd, Rr
• Rd and Rr are registers
• Operation: Rd <- Rd + Rr

ADC Rd, Rr
• Add with carry
• Rd <- Rd + Rr + C

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

80

Add Two Register Values

ADD Rd, Rr
• Fetch register

values

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

81

Add Two Register Values

ADD Rd, Rr
• Fetch register

values
• ALU performs

ADD

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

82

Add Two Register Values

ADD Rd, Rr
• Fetch register

values
• ALU performs

ADD
• Result is

written back to
register via the
data bus

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

83

Some Mega2560 Arithmetic and
Logical Instructions

NEG Rd: take the two’s complement of Rd
AND Rd, Rr: bit-wise AND with a register
ANDI Rd, K: bit-wise AND with a constant
EOR Rd, Rr: bit-wise XOR
INC Rd: increment Rd
MUL Rd, Rr: multiply Rd and Rr (unsigned)
MULS Rd, Rd: multiply (signed)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

84

Some Mega8 Test Instructions

CP Rd, Rr
• Compare Rd with Rr

TST Rd
• Test for if register Rd is zero or a negative

number

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

86

Some Program Flow Instructions

RJMP k
• Change the program counter by k+1
• PC <- PC + k + 1

BRGE k
• Branch if greater than or equal to
• If last compare was greater than or equal

to, then PC <- PC + k + 1

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

92

Connecting Assembly Language to C

• Our C compiler is responsible for
translating our code into Assembly
Language

• Today, we rarely program in Assembly
Language
– Embedded systems are a common exception
– Also: it is useful in some cases to view the

assembly code generated by the compiler

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

93

An Example

A C code snippet:

if(B < A) {
D += A;

}

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

94

An Example

A C code snippet:

if(B < A) {
D += A;

}

The Assembly :
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3
……..

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

95

An Example

A C code snippet:

if(B < A) {
D += A;

}

The Assembly :
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3
……..

Load the contents of memory
location A into register 1

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

96

An Example

A C code snippet:

if(B < A) {
D += A;

}

The Assembly :
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3
……..

Load the contents of memory
location B into register 2

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

97

An Example

A C code snippet:

if(B < A) {
D += A;

}

The Assembly :
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3
……..

Compare the contents of register
2 with those of register 1

This results in a change to the
status register

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

98

An Example

A C code snippet:

if(B < A) {
D += A;

}

The Assembly :
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3
……..

Branch If Greater Than or Equal To:
jump ahead 3 instructions if true

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

99

An Example

A C code snippet:

if(B < A) {
D += A;

}

The Assembly :
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3
……..

Branch if greater than or equal to
will jump ahead 3 instructions if
true

if true

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

100

An Example

A C code snippet:

if(B < A) {
D += A;

}

The Assembly :
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3
……..

Not true: execute the next
instruction

if not true PC

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

101

An Example

A C code snippet:

if(B < A) {
D += A;

}

The Assembly :
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3
……..

Load the contents of memory
location D into register 3

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

102

An Example

A C code snippet:

if(B < A) {
D += A;

}

The Assembly :
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3
……..

Add the values in
registers 1 and 3 and
store the result in
register 3

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

103

An Example

A C code snippet:

if(B < A) {
D += A;

}

The Assembly :
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3
……..

Store the value in register
3 back to memory
location D PC

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

104

The Important Stuff
Instructions are the “atomic” actions that are taken

by the processor
• One line of C code typically translates to a

sequence of several instructions
• In the mega 2560, most instructions are

executed in a single clock cycle

The high-level view is important here: don’t worry
about the details of specific instructions

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

148

Atmel
Mega2560

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

149

Atmel
Mega2560

Pins are organized
into 8-bit “Ports”:

• A, B, C … L
– But no “I”

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

150

Digital Input/Output

• Each port has three registers that control
its behavior.

• For port B, they are:
– DDRB: data direction register B
– PORTB: port output register B
– PINB: port input B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

151

A First Circuit

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

152

Bit Manipulation

PORTB is a register
• Controls the value that is output by the set

of port B pins
• But – all of the pins are controlled by this

single register (which is 8 bits wide)

• In code, we need to be able to manipulate
the pins individually

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

153

Bit-Wise Operators

If A and B are bytes, what does this code
mean?

C = A & B;

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

154

Bit-Wise Operators

If A and B are bytes, what does this code
mean?

C = A & B;

The corresponding bits of A and B are
ANDed together

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

155

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

? C = A & B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

156

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

C = A & B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

157

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

0 C = A & B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

158

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

1 0 C = A & B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

159

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

0 0 0 1 1 0 1 0 C = A & B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

160

Bit-Wise Operators

Other Operators:
• OR: |
• XOR: ^
• NOT: ~

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

163

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of A to 1?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

164

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of A to 1?

A = A | 4;

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

165

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of A to 0?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

166

Bit Manipulation
Given a byte A, how do we set bit 2

(counting from 0) of A to 0?

A = A & 0xFB;

or

A = A & ~4;

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

167

Bit Shifting

uint8_t A = 0x5A;
uint8_t B = A << 2;
uint8_t C = A >> 5;

What are the values of B and C?
What mathematical operations have we

performed?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

168

A First
Program

Flash the
LEDs at a
regular
interval

• How do we
do this?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

169

A First
Program

How do we
flash the LED
at a regular
interval?

• We toggle the
state of PC0

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

170

A First Program
main() {

DDRC = 1; // Set port C pin 0 as an output

while(1) {
PORTC = PORTC | 0x1;
delay_ms(500);
PORTC = PORTC & ~0x1;
delay_ms(500);
}

}

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

171

A First Program
main() {

DDRC = 1; // Set port C pin 0 as an output

while(1) {
PORTC = PORTC ^ 0x1; // XOR bit 0 with 1
delay_ms(500); // Pause for 500 msec
}

}

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

172

A Second Program
main() {

DDRC = 3; // Set port C pins 0, and 1 as outputs

while(1) {
PORTC = PORTC ^ 0x1; // XOR bit 0 with 1
delay_ms(500); // Pause for 500 msec
PORTC = PORTC ^ 0x2; // XOR bit 1 with 1
delay_ms(250);
PORTC = PORTC ^ 0x2; // XOR bit 1 with 1
delay_ms(250);

}
}

What does this program do?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

173

A Second Program
main() {

DDRC = 3; // Set port C pins 0, and 1 as outputs

while(1) {
PORTB = PORTC ^ 0x1; // XOR bit 0 with 1
delay_ms(500); // Pause for 500 msec
PORTB = PORTC ^ 0x2; // XOR bit 1 with 1
delay_ms(250);
PORTB = PORTC ^ 0x2; // XOR bit 1 with 1
delay_ms(250);

}
}

Flashes LED on PC1 at 1 Hz
on PC0: 0.5 Hz

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

174

Port-Related Registers

The set of C-accessible register for controlling
digital I/O:

PINDPORTDDDRDPort D

PINCPORTCDDRCPort C

PINBPORTBDDRBPort B

ReadingWritingDirectional
control

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

175

More Bit Masking
• Suppose we have a 3-bit number (so

values 0 … 7)
• Suppose we want to set the state of B3,

B4, and B5 with this number (B3 is the
least significant bit)
And: we want to leave the other bits
undisturbed

• How do we express this in code?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

176

Bit Masking
main() {

DDRB = 0x38; // Set pins B3, B4, B5 as outputs

:
:

uint8_t val; // A short is 8-bits wide

val = command_to_robot; // A value between 0 and 7

PORTB = ???? // Fill this in
}

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

177

Bit Masking
main() {

DDRB = 0x38; // Set pins B3, B4, B5 as outputs

:
:

uint8_t val; // A short is 8-bits wide

val = command_to_robot; // A value between 0 and 7

PORTB = (PORTB & ~0x38) // Set the current B3-B5 to 0s
| ((val & 0x7)<<3); // OR with new values (shifted

// to fit within B3-B5
}

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

178

Reading the Digital State of Pins

Given: we want to read the state of PB6 and
PB7 and obtain a value of 0 … 3

• How do we configure the port?
• How do we read the pins?
• How do we translate their values into an

integer of 0 .. 3?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

179

Reading the Digital State of Pins
main() {

DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

:
:

unsigned short val, outval; // A short is 8-bits wide

val = ???? // Read the input value of B

outval = ??? // Translate to a value of 0 … 3
}

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

180

Reading the Digital State of Pins
main() {

DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

:
:

unsigned short val, outval; // A short is 8-bits wide

val = PINB;

outval = (val & 0xC0) >> 6;
}

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

181

Putting It All Together
• Program development:

– On your own laptop
– We will use a C “crosscompiler” (avr-gcc and

other tools) to generate code on your laptop
for the mega8 processor

• Program download:
– We will use “in circuit programming”: you will

be able to program the chip without removing
it from your circuit

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

182

Compiling and Downloading Code
Preparing to program:
• See the Atmel HOWTO (pointer from the

schedule page)
• Windoze: Install AVR Studio and WinAVR
• OS X: Install OSX-AVR

– We will use ‘make’ for compiling and
downloading

• Linux: Install binutils, avr-gcc, avr-libc, and
avrdude
– Same as OS X

