Project 2

Project 2 Objectives

At the end of this project, you should be able to:

- read analog information through the Atmel Analog-to-Digital converter,
- using a sensor model, interpret analog voltages in terms of sensed quantities, and
- convey information about sensors using a set of LEDs and using serial output.

Part 1: Circuit

- Add a second switch
- Connect the rate gyro
- Connect the distance sensors

Part 2: Rate Gyro

Must implement:

- int16_t get_gyro_rate(void)
 - Returns rate in 10ths of a degree per second
 - Range: -300 to 300 deg/sec
- void display_rotation_rate(int16_t rate)
 - Display using the 10 LED bar

Part 2: Rate Gyro II

Must implement:

- Main function: grow your while(1) loop:
 - Get the heading, rotation rate and distances
 - Display one of: rotation rate, left distance, right distance (depending on switch configuration) using LEDs
 - Write sensor data to serial port

Part 3: Distance Sensors

Must implement:

- uint16_t get_ir_distance(uint8_t index)
 - Return distance in mm
 - Must carefully convert analog signal into distance
- void display_distance(uint16_t dist)
 - Changes the 10 LEDs to indicate distance

Part 4: Hovercraft

Mount:

- Batteries
- Forward thrust fans
- Breadboard
- Distance sensors

Code

 Documentation: this time, we will be looking more carefully at the format of your documentation (see the example)

Demonstration/Presentation

Same model as project 1