Project 3

Project 3 Objectives

At the end of this project, you should be able to:

- control the speed and direction of DC motors through an H-bridge circuit,
- implement and tune a proportional-derivative control law that maintains the hovercraft's heading at some desired orientation, and
- implement a high-level control law that decides when to brake and when to use the PD control law.

Part 1: Circuit

- Mount motor amplifier board
- Connect ducted fans to the output side
- Connect microprocessor to the input side
- Keep away from the compass

Part 2: Fan Control Interface

Must implement:

- void set_lift_direction(MotorDirection direction)
 - Determines whether the lift fan is pushing air into or out of the chamber

• In project.h, define:

```
typedef enum {
    BRAKE,
    HOVER
} MotorDirection;
```

 This new data type has two values: BRAKE and HOVER

Part 2: Fan Control Interface

Must implement:

- void set_lift_magnitude(int16_t magnitude)
 - Sets the duty cycle of the middle fan. Must ensure that magnitude is in the range [0 ... 1023]
- void set_lateral_magnitudes(int16_t magnitude_left, int16_t magnitude_right)
 - Sets the duty cycle of the left and right fans. Must ensure that the magnitudes are in the valid range
- Initialization of the PWM channels (more on this today)

Part 2: testA()

Test function implements the following steps:

- Set thrust direction to HOVER
- 2. Note the original heading (call it your "goal")
- 3. Slowly ramp the lift fan thrust upwards until the heading error is above 45 degrees
- 4. Slowly ramp the lift fan thrust downwards until at zero
- Set thrust direction to BRAKE
- Slowly ramp the lift fan thrust upwards until 50% duty cycle
- 7. Slowly ramp the lift fan thrust downwards until 0% duty cycle

Part 2: testB()

Test function implements the following step:

- 1. Slowly ramp the left fan up to a duty cycle of 25%
- 2. While ramping the left fan down to 0%, ramp the right fan up to a duty cycle of 25%
- 3. Slowly ramp the right fan down to 0% duty cycle

Part 3: Proportional-Derivative Control

Must implement:

- void pd_control(uint16_t forward_thrust, int16_t error, int16_t rotation_rate)
 - Implements the PD-control law: compute a left/right differential
 - Add this differential to forward_thrust to derive duty cycle signals for the left/right fans
 - Use the computed duty cycles to set the fan speed

Note: test slowly

Part 4: Main Program

 Start with the template in the project specification and fill in your own code as necessary

- The interrupt service routine sets the flag_timing variable to 1 every 49.152 ms
 - This allows us to ensure that we have ~20 control cycles per second.

Part 5: Hovercraft

- Mount the motor amplifier board
- Connect the board to the batteries (motor power pins only - not the logic pins!)
- No wires near the fans

Checkpoint

- 30 minute meeting by April 4th
- Have parts 1 & 2 completed and tested
- Have part 3 implemented and partially tested
- A successful checkpoint is worth 10% of the project grade

Full Project Due April 11th