Project 3

Andrew H. Fagg: Embedded Real-Time
Systems: Project 3



Project 3 Objectives

At the end of this project, you should be able to:

e control the speed and direction of DC motors
through an H-bridge circuit,

e implement and tune a proportional-derivative
control law that maintains the hovercraft's
heading at some desired orientation, and

 implement a high-level control law that
decides when to brake and when to use the
PD control law.



Part 1: Circuit

Mount motor amplifier board

Connect ducted fans to the output side
Connect microprocessor to the input side
Keep away from the compass



Part 2: Fan Control Interface

Must implement:

« void set lift _direction(MotorDirection direction)

— Determines whether the lift fan is pushing air into
or out of the chamber

* In project.h, define:

typedef enum {
BRAKE,
HOVER

} MotorDirection;

— This new data type has two values: BRAKE and
HOVER



Part 2: Fan Control Interface

Must implement:
e void set lift magnitude(intl6 t magnitude)

— Sets the duty cycle of the middle fan. Must ensure
that magnitude isinthe range [0 ... 1023]

« void set lateral magnitudes(intl6é _t magnitude left,
INtl6 t magnitude right)

— Sets the duty cycle of the left and right fans. Must
ensure that the magnitudes are in the valid range

e |nitialization of the PWM channels (more on this
today)



Part 2: testA()

Test function implements the following steps:

1.
2.
3.

o

Set thrust direction to HOVER
Note the original heading (call it your "goal")

Slowly ramp the lift fan thrust upwards until the heading
error is above 45 degrees

Slowly ramp the lift fan thrust downwards until at zero
Set thrust direction to BRAKE

Slowly ramp the lift fan thrust upwards until 50% duty
cycle

Slowly ramp the lift fan thrust downwards until 0% duty
cycle



Part 2: testB()

Test function implements the following step:

1. Slowly ramp the left fan up to a duty cycle of
25%

2. While ramping the left fan down to 0%, ramp
the right fan up to a duty cycle of 25%

3. Slowly ramp the right fan down to 0% duty
cycle



Part 3: Proportional-Derivative Control

Must implement:

« void pd_control(uintl6é_t forward thrust, intl6 t error,
INtl6_t rotation_rate)

— Implements the PD-control law: compute a
left/right differential

— Add this differential to forward thrust to derive
duty cycle signals for the left/right fans

— Use the computed duty cycles to set the fan speed

Note: test slowly



Part 4: Main Program

e Start with the template in the project
specification and fill in your own code as
necessary

e The interrupt service routine sets the
flag_timing variable to 1 every 49.152 ms

— This allows us to ensure that we have ~20 control
cycles per second.



Part 5: Hovercraft

e Mount the motor amplifier board

e Connect the board to the batteries (motor
power pins only - not the logic pins!)

e No wires near the fans



Checkpoint

30 minute meeting by April 4th
Have parts 1 & 2 completed and tested
Have part 3 implemented and partially tested

A successful checkpoint is worth 10% of the
project grade



Full Project Due April 11th



