
Project 1 Demos

• Before you can demo your project for me:
– UML and Cover Page must be turned in
– Code stubs and javadocs must be submitted 

to D2L
• When you do give a demo, no more 

submissions for the Design stage will be 
accepted after that time



Project 1 Demos cont.

• I have a zip drive with different sets of 
valid instructions

• One will be chosen at random and placed 
in the proper directory so your code and 
open and read it

• Your program will be told to run “ALL” and 
a specific instruction set



Project 1 Demos cont.

• Your group has until 5 pm on the 24th to 
have a correct demo run

• If you do not pass a demo the first time, 
you can come back after figuring out what 
went wrong

• You have 4 tries to get a successful demo, 
and each run will be with a different set



Lab 3 Objectives

1. Analyze the class structure of an existing 
java program using UML diagrams,

2. Extract and store sensor data from the 
Finch,

3. Employ abstract classes to provide 
generic programming functionality, and

4. Search the Finch “data streams” for key 
values�



Sensor Samples

• We will take a sample of data at regular 
(50 ms) intervals for about 5 seconds (so, 
100 samples total).

• Each sample is a tuple that contains the 
values from the light, acceleration, 
obstacle and temperature sensors.



Queries

Goal: find and report the minimum, 
maximum and median data sample

• One way to do this: sort the samples and 
then take the first, last and middle samples

• How do we sort the samples?



Queries

How do we sort the samples?
• Use the sort method from the book
• But: we need some way of telling sort() to 

use a particular class variable (such as the 
Y component of the accelerometer)



One Solution…

Answer: define a new interface 
Comparable2

• Requires that the following is provided by 
the implementing class:
public int compareTo2(Object obj, VariableType var);

• VariableType is an enumerated type that 
tells the implementation of compareTo2() 
which class variable to compare



Enumerated Types

• An enumerated type variable is a means 
of storing one of several values

• Values are typically symbolic: 
– TRUE and FALSE
– TEMPERATURE, LIGHT_LEFT, etc.

• Values are often non-ordered
– The “equals” operator is meaningful
– Greater-than and less-than are not 

meaningful



Provided Classes and Interfaces

• VariableType: a generic interface for specifying 
which variable (or “key”) to do the comparison on

• SensorType: a specific interface that provides an 
enumeration of the different sensor channels

• FinchSensor: a class that stores a single sensor 
sample

• Comparable2: an interface similar to Comparable
• sensorDriver: the top level program



General “To Do”

• Get the Finch talking to your computers
• Download Lab3.zip
• Analyze program (and draw the UML 

diagram)
• Provide implementation for compareTo2()
• Perform quick experiments

(try to get through all of these by the end of 
lab)


