
Programming Structures and Abstractions (CS 2334)
Project 4

October 29, 2009

Introduction

In this project, you will be creating a graphical user interface for viewing, manipulating and
executing Finch Actions. This project brings together your work in project 3 and labs 4 &
5.

Your program will maintain a single “master” Finch Action list that will be manipulated
by the user. At any given time, the user may view the entire master list or just those actions
that match a specified “filter” name. The master list will be manipulated by the user in
several ways. First, the user may load an action list from the disk, either replacing the
existing list or merging with it. Second, the user may manually add new actions or edit
existing ones through a dialog box. Finally, the user may delete actions from the master list.

Milestones

1. Create a FinchData class that extends FinchDataAbstract and contains the master
action list and provides a set of methods that will allow the GUI code to manipulate
the list. (20 pts)

2. Create the GUI layout for the main window. This class, FinchDisplay, will extend the
FinchDisplayAbstract class. (5 pts)

3. Add action listeners to the main window that allow the user to manipulate the action
list. (20 pts)

4. Create the layout for the pop-up dialog box that allows the user to view/edit a single
Finch Action. This class, FinchActionDialog, will extend FinchActionDialogAbstract.
(5 pts)

5. Add the action listeners to the dialog box that allow the user to edit the Finch Action.
In addition, add the necessary functionality that will allow the dialog box to create a
new Finch Action object. (20 pts)

1



Other components:

� Develop and use a proper design: create an instance diagram that shows the parent-
child relationships of the graphical component instances. (15 pts total: 10 pts for the
design; 5 pts for the final version of the program)

� Use proper documentation and formatting (javadoc and in-line documentation) (15
pts)

Note: of the design and documentation components, a total of 10 points are available
during the design phase. The remaining 90 points are obtainable for the final submission of
the project.

Other notes:

� This project is much more complicated than any of the others to date (you have about
1000 new lines of code to write, not including documentation). Start early.

� You must extend the provided abstract classes (FinchDataAbstract, FinchDisplayAb-
stract and FinchActionDialogAbstract). These abstract classes may not be edited.
(note: exceptions may be granted by the instructor if appropriate reasons are given)

� You must write your own code for the GUI component layout (no tools may be used
to automatically generate this code).

� Implement and test incrementally. Doing the implementation in the order of the mile-
stones will help you do this.

� The example executable may be used as a guideline for the look-and-feel of your GUI.
However, you may make different choices.

This lab is due in two phases:

1. Thursday, November 5th at 5:00pm: design

2. Thursday, November 19th at 5:00pm: completed program and short demonstration.

More details for what to hand-in and when may be found below.

Resources

Main web page / projects / project4

� project4.pdf: this project description

� cs2334 project4.pdf: a copy of the lab section slides

2



� Abstract class definitions: FinchDisplayAbstract.java FinchActionDialogAbstract.java
and FinchDataAbstract.java

� FinchDriver.java: driver class

� *.txt: example input files

� project4.jar: executable implementation of the assigned program

Example Executable

project4.jar contains an example implementation of the assigned program. To execute it,
move it, finch.jar, finch core.jar to the same folder. At the command line (unix), “cd” to
this folder and execute:

java −cp project4 . jar : finch_core . jar : finch . jar FinchDriver

In windows: you will also need local copies of the dll files. Then: “cd” to this folder and
execute:

java −cp project4 . jar ; finch_core . jar ; finch . jar FinchDriver

Note: there is also a project4 noFinch.jar file that you can use instead that does not attempt
to connect to the Finch.

Input Files

We will keep the same input text file format as with the previous project.

Milestones

Milestone 1: FinchData Class

Your program will maintain a single “master” Finch Action list that will be manipulated
by the user. Your FinchData class will provide this functionality and must extend the
FinchDataAbstract class. This class will provide:

� A set of methods for manipulating the master action list. It is through these methods
that your FinchDisplay class will manipulate the action list.

� A set of methods for interacting with the Finch. Note: the other classes will not

touch the Finch directly.

Notes:

3



� You may need to introduce private helper methods (in particular, you have already
implemented some of these in previous projects and labs).

� You should not have to introduce any other public methods.

Milestone 2: FinchDisplay Class Look-and-Feel

The primary GUI window will provide a view of the master action list and a means for the
user to manipulate the list. This GUI will include the following components:

� A menu for file manipulation (read and merge both text and binary files, and write
binary files) and for exiting the program.

� A name filter. If nothing is specified, then all actions in the master list will be displayed
by the window. If a non-empty string is specified, then only actions whose names that
match the string will be displayed.

� Buttons for executing the filtered action list in forward and reverse orders.

� A panel that contains the current (filtered) set of actions (one action per line). Hint:
use a JList for this.

� A set of buttons for manipulating individual finch actions:

– Creating new actions

– Editing a selected action

– Deleting one or more selected actions, and

– cleaning the master action list (deleting duplicate entries).

For this milestone, complete the parts of the constructor that will create all of the graph-
ical components. If it is helpful, feel free to insert “dummy” data into the graphical compo-
nents.

Milestone 3: FinchDisplay Behavior

Provide the full implementation of FinchDisplay, including:

� Implementations of the abstract methods.

� Creation of event listeners that will handle the various events.

Note: you should have this milestone completely working before moving on to the next
milestone.

4



Milestone 4: FinchActionDialog Class

The FinchActionDialog class will extend the FinchActionDialogAbstract class and will pro-
vide a pop-up dialog box that will allow a user to create a new Finch Action or to edit an
existing one.

In particular, the behavior will be as follows:

� If the user clicks on the New button in the main window, then a dialog box with a
reasonable set of default values will be opened. Once the user completes the specifica-
tion of the action and clicks on the Ok button in the dialog box, then this action will
be added to the master action list.

� If the user selects an action in the main window, and then clicks on the Edit button,
the dialog box will be initialized with values that reflect the selected action. Once the
user completes the specification of the action and clicks on the Ok button in the dialog
box, then this action will be added to the master action list and the old action will be
removed.

� If the user clicks on the Edit button without selecting an action, then the interface
should behave as if the New button was pressed.

� If the user clicks on the Cancel button in the dialog box, then the dialog will close,
but no changes will be made to the master action list.

For this milestone, complete the parts of the constructor that will create all of the graph-
ical components.
Hints:

� The dialog box will contain components for all possible values for any action.

� Depending on the selected action type, a subset of these components will be displayed.
What components are visible can be configured using the setVisible() method for any
graphics component. Note that if a container is set to be not visible, then all of its
children are not rendered.

� FinchActionDialog should not interact with FinchData in any way. Changes to the
master action list should be handled only by FinchDisplay.

Milestone 5: FinchActionDialog Behavior

Provide the full implementation of FinchActionDialog, including:

� Implementations of the abstract methods.

� Creation of event listeners that will handle the various events.

5



Hand-In Procedures

Part 1: Design

Deadline: Thursday, November 5th at 5:00pm

Each group must hand in one copy of each of the following:

1. A printed cover page that lists the group members, work contributed by each, and any
outside citations.

2. An instance diagram that shows the parent-child relationships of the graphical com-
ponent instances.

Part 2: Complete program and short demonstration.

Deadline: Thursday, November 19th at 5:00pm

Each group must do the following:

1. Turn in a printed cover page that lists the group members, work contributed by each,
and any outside citations.

2. An updated version of the instance diagram.

3. Turn in project4.zip to D2L. This is the zip file produced by Eclipse that contains:

� Each of the class implementations with documentation. The author(s) of each
class should be documented at the top of the java file.

� html description of your project produced by javadoc (including private compo-
nents).

4. A short demonstration. We will reserve time during your laboratory section for you
to demonstrate your working program. You may also attend office hours or make
appointments to perform the demonstrations.

General Hints and Notes

� Your program must be your own work. Do not discuss or look at the solutions of other
groups in the class. However, you may discuss general issues (i.e., not directly related
to the project requirements) with your classmates, as well as use the book and the
resources available on the net.

� Start your work early. This is not a trivial programming assignment.

� Ask for help early. If you are stuck on something, talk to the TA or the instructor
sooner than later (this is what we are here for).

6


