
Programming Structures and Abstractions (CS 2334)
Project 5

November 19, 2009

Introduction

This project is an extension of project 4 in which we will define a new type of FinchAction,
FinchMeta, that consists of sequences of FinchActions. This meta action will allow us to
draw fractal structures with our Finch and to define action sequences that are conditionally
executed and repeated.

Objectives

The objectives of this project are to:

1. implement recursive data structures and programs, and

2. use the recursive and looping nature of our FinchActions to create interesting Finch
programs.

Milestones

1. Implement the FinchTurn action that will turn the Finch by a specified angle (10
pts)

2. Implement the FinchJogScaled action that will jog the Finch by a distance propor-
tional to a “scale” parameter (10 pts)

3. Implement the FinchMeta action that will contain a sequence of FinchActions (25
pts)

4. Update the FinchActionDialog class and the FinchData.readText() method to accom-
modate the new actions (20 pts)

5. Write your own FinchAction lists (10 pts)

1



Other components:

� Describe the details of your new classes using a detailed UML diagram (related classes
may be abbreviated) (5 pts)

� Design the “look” of your new FinchActinDialog box. Be sure to capture the layout
and types of the key components (5 pts)

� Use proper documentation and formatting (javadoc and in-line documentation) (15
pts)

Note: of the design and documentation components, a total of 15 points are available
during the design phase. The remaining 85 points are obtainable for the final submission of
the project.

Other notes:

� You must extend the provided abstract classes. These abstract classes may not be
edited. (note: exceptions may be granted by the instructor if appropriate reasons are
given)

� You must write your own code for the GUI component layout (no tools may be used
to automatically generate this code).

� Implement and test incrementally. Doing the implementation in the order of the mile-
stones will help you do this.

� The example executable may be used as a guideline for the look-and-feel of your GUI.
However, you may make different choices.

This lab is due in two phases:

1. Thursday, December 3rd at 5:00pm: design

2. Thursday, December 10th at 5:00pm: completed program and short demonstration.

More details for what to hand-in and when may be found below.

Resources

Main web page: see section on project 5

Main web page / projects / project5

� project5.pdf: this project description

� cs2334 project5.pdf: a copy of the lab section slides

� Abstract class definition: FinchMetaAbstract.java

� *.txt: example input files

� project5.jar: executable implementation of the assigned program

2



Example Executable

project5.jar contains an example implementation of the assigned program. To execute it,
move it, finch.jar, finch core.jar to the same folder. At the command line (unix), “cd” to
this folder and execute:

java −cp project5 . jar : finch_core . jar : finch . jar FinchDriver

In windows: you will also need local copies of the dll files. Then: “cd” to this folder and
execute:

java −cp project5 . jar ; finch_core . jar ; finch . jar FinchDriver

Note: there is also a project5 noFinch.jar file that you can use instead that does not attempt
to connect to the Finch.

Input Files

We will keep the same input text file format as with the previous projects. The text files
now have three additional options:

<name> <priority> TURN <degrees> <velocity>

<name> <priority> SJOG <duration> <left> <right>

<name> <priority> META <filter> <terminal> <condition> <loop> <scaleFactor> <minScale>

where:

� filter and terminal are strings,

� condition is one of: All, NoObstacle, LeftObstacle, RightObstacle, BothObstacle,
Level, BeakUp, BeakDown, UpsideDown (more information below),

� loop is one of: If, IfNot, While, WhileNot, and

� scaleFactor and minScale are doubles in the range of 0 to 1.

Milestones

Milestone 1: FinchTurn

Implement class FinchTurn that extends FinchAction. This class has two properties that
represent the angle to turn and the wheel velocities.

The Finches are not very accurate at turning. You may have to add a constant correction
factor to your FinchAction class to achieve better turns. Add this as a class constant.

3



Milestone 2: Scaled Execution

Implement for all actions (existing and new):

pub l i c void execute ( Finch myFinch , double scale )

The default behavior for this method is to simply call:

pub l i c void execute ( Finch myFinch )

Note: think carefully about how to simply implement this default behavior.

Create a new class, FinchJogScaled that extends FinchJog. For this class only, the
method:

pub l i c void execute ( Finch myFinch , double scale )

will scale the specified duration by the parameter scale (there are no other differences).
Modify your FinchActionDialog to allow the user to also select this action and its

parameters (and those of FinchTurn. Note: an instance of FinchJogScaled is also an
instanceof FinchJog.

Modify FinchActionList: modify the execute() method to accept a scale parameter
that is passed to all actions in the list.

Modify the FinchData execute() method. It should now provide a scale of 1.0 to the
FinchActionList.execute() method.

Milestone 3: FinchMeta

Implement a FinchMeta action class that extends FinchMetaAbstract. Unlike our other
FinchActions, FinchMeta is a “meta action”: executing it results in the execution of a
sequence of FinchActions. The sequence of FinchActions is defined by a filter string that
selects actions from the master action list. The conditions of execution are defined by
several variables.

The conditionType property defines (in part) the conditions under which list of actions
will be executed. The possible types are:

� FinchMeta.conditionAll: always true

� FinchMeta.conditionNoObstacle: true if there are no obstacles

� FinchMeta.conditionLeftObstacle: true if there is an obstacle to the left

� FinchMeta.conditionRightObstacle: true if there is an obstacle to the right

� FinchMeta.conditionBothObstacle: true if there is an obstacle to both the left and
right

4



� FinchMeta.conditionLevel: true if the Finch is level

� FinchMeta.conditionBeakUp: true if the Finch beak is up

� FinchMeta.conditionBeakDown: true if the Finch beak is down

� FinchMeta.conditionUpsideDown: true if the Finch is upsidedown

The loopType property defines the conditional (or loop) structure that is used:

� FinchMeta.loopIf: the action sequence is executed if the condition is true

� FinchMeta.loopNotIf: the action sequence is executed if the condition is not true

� FinchMeta.loopWhile: the action sequence is executed repeatedly as long as the con-
dition is true

� FinchMeta.loopNotWhile: the action sequence is executed repeatedly as long as the
condition is not true

The specific rules of execution are:

� Terminal condition: the specified scale is less than minScale. If this is the case,
then the actions that match filterTerminal are executed with a scale of scale *

scaleFactor.

� Recursive condition: the specified scale is greater than or equal to minScale. If this
is the case, then the actions that match filter are executed according to the loopType

and conditionType, with a scale of scale * scaleFactor.

Milestone 4: Add new FinchActions to ActionDialog

Add the FinchMeta class to your action dialog box. This may require reorganization of your
box (I had to go to 2 columns).

Add all three new classes to your FinchData.readText() method (the name of your method
may be different). FinchMetaAbstract.string2Condition() and string2Loop() will be helpful
in this step.

Milestone 5: Create Your Own FinchAction Lists

Using meta actions, create (at least) two interesting recursive programs. Be ready to demon-
strate these.

5



Hand-In Procedures

Part 1: Design

Deadline: Thursday, December 3rd at 5:00pm

Each group must hand in one copy of the following:

1. a printed cover page that lists the group members, work contributed by each, and any
outside citations,

2. a detailed UML design of classes FinchTurn, FinchJogScaled and FinchMeta (also
include high-level details of any related classes), and

3. a design for the new FinchActionDialog box (document the layout and type of the key
components).

Part 2: Complete program and short demonstration.

Deadline: Thursday, December 10th at 5:00pm

Each group must do the following:

1. Turn in a printed cover page that lists the group members, work contributed by each,
and any outside citations.

2. Turn in project5.zip to D2L. This is the zip file produced by Eclipse that contains:

� Each of the class implementations with documentation. The author(s) of each
class should be documented at the top of the java file.

� html description of your project produced by javadoc (including private compo-
nents).

3. A short demonstration. We will reserve time during your laboratory section for you
to demonstrate your working program. You may also attend office hours or make
appointments to perform the demonstrations.

General Hints and Notes

� Your program must be your own work. Do not discuss or look at the solutions of other
groups in the class. However, you may discuss general issues (i.e., not directly related
to the project requirements) with your classmates, as well as use the book and the
resources available on the net.

� Start your work early. This is not a trivial programming assignment.

� Ask for help early. If you are stuck on something, talk to the TA or the instructor
sooner than later (this is what we are here for).

6


