Project 5

Fun with (Fun with (Fun with (Fun

with (Fun with (Fun with (Fun with gecuson



Recursion

e Definition: a method or structure that
directly or indirectly invokes itself

 Must always have two situations:

— At least one base (terminal) case that says
when the recursion ends

— At least one recursive case that results in it
Invoking itself while reducing the original
problem in some way towards a base case




Examples of Recursive Data Structures

e A String Is a sequence of characters
— Base Case: Strings are null terminated — “\0”
A node of a LinkedList is defined as
having a value and a LinkedLlist

— Base Case: Last node has a dummy (null)
object for its LinkedLlist

A node of a Tree Is defined as having a
value and two Trees

— Base Case: A leaf is just a Tree node with null
Trees



The Fibonacci Sequence
F(nN)=F(n-1)+ F(n-2)
F(0)=0
F(1) =1

Application Contexts:

 Model the number of rabbit pairs as a
function of time

* Prosody (meter) in Sanskrit
* Basis for Incan calculator for grain planting



A gquick recursive program

The Fibonacci sequence is easily done with
recursion:

public Int fib (Int num) {
// Exercise: 1mplement this method

¥



A gquick recursive program

The Fibonacci sequence is easily done with
recursion:
public Int fib (Int num) {
iIT (num == 0)
return O;
else 1f (hum == 1)
return 1;

else
return (Fib(hum-1) + fib(num-2));}

Not very efficient though as fib(num) requires twice
as many function calls as fib(num-1)



A higher level recursive
program

* \We've been sorting by comparing a
number against all the numbers in the list
— Very time intensive as lists get longer

 Two basic ideas help to speed up this
Process:

— The shorter the list, the quicker it is to sort

— If two lists are already sorted, putting them
together is very simple.



Recursive sorting:. Merge-Sort

 Base Case: a list of size 1 Is already
sorted!

 Recursive Case: Split the list in half and
sort each half

 Then merge the sorted halves together



public void m sort(List list)
{
iIT (list.size == 1)
return list;
else

1

int middle = list.si1ze/2;
list left = list][O] to list[middle-1];
list right = list[middle] to list|end];
return (merge (mn_sort(left),

m _sort(right)));



public List merge(List left, List right) {

int leftindex = 0, rightlndex = O;
List output;

while (leftlndex < left.size &&

rightIndex < right.size){
1T (left[leftindex] < right[rightlindex]) {

output.add(left]leftindex]);
leftindex++;

}else{

// right[rightindex] <= left[leftindex]

output.add(right[rightindex]);
righttindex++;

}
}

// Handle trailing i1tems

IT (leftlIndex == left.size)

output.add(the rest of right);

else // rightindex == right.size

output.add(the rest of left);



Recursion vs lteration

* Anything done recursively can be done
through looping and vice versa
* Recursion Disadvantages:

— Takes up memory space with each call
— Takes time to make the function calls
— Can result in StackOverflowErrors

 Recursion Advantages:

— Can enable a cleaner and easier
Implementation

— Some problems are just inherently recursive:
* Towers of Hanol, fractals



Project 5

njectives:

mplement recursive data structures and
orograms

Jse recursive structures to implement
Interesting Finch behavior.




New Execution Model

public void execute(Finch myFinch, double scale)

e Scale (0..1) specifies the “size” of a FinchAction
— 1 = full size
— 0 = zero size

e Our FinchActions to date will ignore scale (but
the new ones will use It)



New Classes

 FinchTurn: turn the Finch by a specified
angle at a specified velocity

* FinchJogScaled: the actual duration used
IS a product of the instance duration and
the specified scale (hence, the distance
traveled will be scaled)

 FinchMeta: a meta action that will
conditionally execute a list of FinchActions



FinchMeta Properties

String filter: name of actions in the master list to be
executed In the recursive case

Int conditionType: determines the test that must be true
In order for the recursive actions to be executed

Int loopType: determines whether the recursive actions
should be executed once or repeatedly

String filterTerminal: name of actions in the master list to
be executed in the terminal case

double scaleFactor: 0 .. 1. Specifies how much smaller
the recursive actions are than the current one

double minScale: 0 ... 1. Scale below which the terminal
case Is executed instead of the recursive case



FinchMeta: Condition Types

conditionAll: always true

conditionNoObstacle: true if there are no obstacles
conditionLeftObstacle: true if there I1s an obstacle to the left
conditionRightObstacle: true if there is an obstacle to the
right

conditionBothObstacle: true if there i1s an obstacle to both
the left and right

conditionLevel: true if the Finch is level
conditionBeakUp: true if the Finch beak is up
conditionBeakDown: true if the Finch beak is down
conditionUpsideDown: true if the Finch is upsidedown



FinchMeta: “Loop” Types

looplf: the action sequence is executed Iif the
condition is true

loopNotlf: the action sequence is executed If the
condition Is not true

loopWhile: the action sequence Is executed
repeatedly as long as the condition is true

loopNotWhile: the action sequence Is executed
repeatedly as long as the condition is not true



FinchMeta Execution

Terminal case: the specified scale iIs less than
minScale

e Actions that match filterTerminal are executed
with a scale of scale * scaleFactor

Recursive case: the specified scale Is greater than
or equal to minScale.

« Actions that match filter are executed according
to the loopType and conditionType, with a
scale of scale * scaleFactor



FinchMeta Execution Example

FinchMeta action:

e filter = draw; filterTerminal = draw_end
« scaleFactor = .8; minScale = .2

e conditionType = BeakUp

e loopType = WhileNot

meta.execute(myFinch, .6):
e Non-terminal case: .6 * .8 > .2

 Checks with Finch to see if beak is up:

— Yes: return

— No: execute all of the actions in the maste rlist that
match the name “draw”. Repeat with Check



Other Things to Handle

 Make sure that your new action classes
are handled by the dialog box and the text
file loader

e Create two Iinteresting recursive programs
(see the class web site for some
references)



