
Project 5

Fun with (Fun with (Fun with (Fun
with (Fun with (Fun with (Fun with (recursion)

Recursion

• Definition: a method or structure that
directly or indirectly invokes itself

• Must always have two situations:
– At least one base (terminal) case that says

when the recursion ends
– At least one recursive case that results in it

invoking itself while reducing the original
problem in some way towards a base case

Examples of Recursive Data Structures

• A String is a sequence of characters
– Base Case: Strings are null terminated – “\0”

• A node of a LinkedList is defined as
having a value and a LinkedList
– Base Case: Last node has a dummy (null)

object for its LinkedList
• A node of a Tree is defined as having a

value and two Trees
– Base Case: A leaf is just a Tree node with null

Trees

The Fibonacci Sequence

Application Contexts:
• Model the number of rabbit pairs as a

function of time
• Prosody (meter) in Sanskrit
• Basis for Incan calculator for grain planting

1)1(
0)0(

)2()1()(

=
=

−+−=

F
F

nFnFnF

A quick recursive program

The Fibonacci sequence is easily done with
recursion:

public int fib (int num) {
// Exercise: implement this method

}

A quick recursive program

The Fibonacci sequence is easily done with
recursion:

public int fib (int num) {
if (num == 0)

return 0;
else if (num == 1)

return 1;
else

return (fib(num-1) + fib(num-2));}

Not very efficient though as fib(num) requires twice
as many function calls as fib(num-1)

A higher level recursive
program

• We’ve been sorting by comparing a
number against all the numbers in the list
– Very time intensive as lists get longer

• Two basic ideas help to speed up this
process:
– The shorter the list, the quicker it is to sort
– If two lists are already sorted, putting them

together is very simple.

Recursive sorting: Merge-Sort

• Base Case: a list of size 1 is already
sorted!

• Recursive Case: Split the list in half and
sort each half

• Then merge the sorted halves together

public void m_sort(List list)
{
if (list.size == 1)

return list;
else
{

int middle = list.size/2;
list left = list[0] to list[middle-1];
list right = list[middle] to list[end];
return (merge (m_sort(left),

m_sort(right)));
}

}

public List merge(List left, List right) {
int leftIndex = 0, rightIndex = 0;
List output;

while (leftIndex < left.size &&
rightIndex < right.size){

if (left[leftIndex] < right[rightIndex]) {
output.add(left[leftIndex]);
leftIndex++;

}else{
// right[rightIndex] <= left[leftIndex]
output.add(right[rightIndex]);
righttIndex++;

}
}
// Handle trailing items
if (leftIndex == left.size)

output.add(the rest of right);
else // rightIndex == right.size

output.add(the rest of left);
}

Recursion vs Iteration
• Anything done recursively can be done

through looping and vice versa
• Recursion Disadvantages:

– Takes up memory space with each call
– Takes time to make the function calls
– Can result in StackOverflowErrors

• Recursion Advantages:
– Can enable a cleaner and easier

implementation
– Some problems are just inherently recursive:

• Towers of Hanoi, fractals

Project 5

Objectives:
• Implement recursive data structures and

programs
• Use recursive structures to implement

interesting Finch behavior.

New Execution Model
public void execute(Finch myFinch, double scale)

• Scale (0..1) specifies the “size” of a FinchAction
– 1 = full size
– 0 = zero size

• Our FinchActions to date will ignore scale (but
the new ones will use it)

New Classes

• FinchTurn: turn the Finch by a specified
angle at a specified velocity

• FinchJogScaled: the actual duration used
is a product of the instance duration and
the specified scale (hence, the distance
traveled will be scaled)

• FinchMeta: a meta action that will
conditionally execute a list of FinchActions

FinchMeta Properties
• String filter: name of actions in the master list to be

executed in the recursive case
• int conditionType: determines the test that must be true

in order for the recursive actions to be executed
• int loopType: determines whether the recursive actions

should be executed once or repeatedly
• String filterTerminal: name of actions in the master list to

be executed in the terminal case
• double scaleFactor: 0 .. 1. Specifies how much smaller

the recursive actions are than the current one
• double minScale: 0 .. 1. Scale below which the terminal

case is executed instead of the recursive case

FinchMeta: Condition Types
• conditionAll: always true

• conditionNoObstacle: true if there are no obstacles
• conditionLeftObstacle: true if there is an obstacle to the left
• conditionRightObstacle: true if there is an obstacle to the

right
• conditionBothObstacle: true if there is an obstacle to both

the left and right

• conditionLevel: true if the Finch is level
• conditionBeakUp: true if the Finch beak is up
• conditionBeakDown: true if the Finch beak is down
• conditionUpsideDown: true if the Finch is upsidedown

FinchMeta: “Loop” Types

• loopIf: the action sequence is executed if the
• condition is true
• loopNotIf: the action sequence is executed if the

condition is not true
• loopWhile: the action sequence is executed

repeatedly as long as the condition is true
• loopNotWhile: the action sequence is executed

repeatedly as long as the condition is not true

FinchMeta Execution
Terminal case: the specified scale is less than

minScale
• Actions that match filterTerminal are executed

with a scale of scale * scaleFactor

Recursive case: the specified scale is greater than
or equal to minScale.

• Actions that match filter are executed according
to the loopType and conditionType, with a
scale of scale * scaleFactor

FinchMeta Execution Example
FinchMeta action:
• filter = draw; filterTerminal = draw_end
• scaleFactor = .8; minScale = .2
• conditionType = BeakUp
• loopType = WhileNot

meta.execute(myFinch, .6):
• Non-terminal case: .6 * .8 > .2
• Checks with Finch to see if beak is up:

– Yes: return
– No: execute all of the actions in the maste rlist that

match the name “draw”. Repeat with Check

Other Things to Handle

• Make sure that your new action classes
are handled by the dialog box and the text
file loader

• Create two interesting recursive programs
(see the class web site for some
references)

