0. Name (2 pts):

CS 2334: Programming Structures and Abstractions
Midterm Exam Il
Monday, November 8, 2010

General instructions:

This examination booklet has 7 pages.

Do not forget to write your name at the top of the page and to sign your name below.
The exam is open book and notes, but closed electronic device.

The exam is worth a total of 100 points (and 10% of your final grade).

Explain your answers clearly and concisely. Do not write long essays (even if there is a
lot of open space on the page). A question worth 5 points is only worth an answer that
is at most one sentence.

You have 50 minutes to complete the exam. Be a smart test taker: if you get stuck on
one problem go on to the next. Don’t waste your time giving details that the question
does not request. Points will be taken off for answers containing excessive or extraneous
information.

Show your work. Partial credit is possible, but only if you show intermediate steps.

Problem Topic Max Grade
0 Name 2

1 Binary I/0 20

2 Graphical User Interfaces 35

3 Event-Driven Programming 15

4 Collections Framework 30

Total

On my honor, I affirm that I have neither given nor received inappropriate aid
in the completion of this exam.

Signature:

Date:




1. Binary I/O (20 pts)

(a) (10 pts) True or False and briefly explain: an ArrayList is always Serializable.

(b) (10 pts) List two types of information that are written to an ObjectOutputStream
when storing an object.



2. Graphical User Interfaces (35 pts)
Consider the following code for a Panel implementation:

import javax.swing.*;
import java.awt.xk;

import javax.swing.event.sx;
import java.awt.event.sx;

public class MyPanel extends JPanel

{
JButton bl = new JButton(”Red”);
JButton b2 = new JButton(”Blue”);
JLabel label = new JLabel(” Color”)
MyPanel self = this;

public MyPanel () {
super () ;

// Configure panel
setLayout (new GridLayout (0,3));

// Event Listener
ActionListener listener = new ActionListener () {
public void actionPerformed(ActionEvent e){
String name = e.getActionCommand () ;
if (name.equalsIgnoreCase(”Red”)) {
self .setBackground (new Color (200, 0, 0));
}else{
self .setBackground (new Color (0, 255, 0));
I

s

// Attach listener
bl.addActionListener (listener);
b2.addActionListener (listener);

s

This panel contains two buttons and a text label. You may assume that an instance
of this panel is properly attached to a JFrame and is made visible.

(a) (10 pts) In one sentence, describe the intended behavior of this panel (note that there
are a couple bugs).



(b) (10 pts) For proper behavior, three lines of code are missing from the constructor.
What are they?

(c¢) (5 pts) Assuming the above code addition, draw the layout of the panel including
all child components.

(d) (10 pts) True or False and explain: a graphical user interface can make use of several
different types of layout managers.



3. Event-Driven Programming (15 pts)

(a) (10 pts) (Mad Events) Complete the following sentences:

A listener a source.
A source a listener.
A listener an event.

(b) (5 pts) True or False: All Events are related to actions performed by the user.



4. Java Collections Framework (30 pts)

Consider the following code:

public class Inhabitant implements Comparable<Inhabitant>

{
public int ID;
public String name;

public Inhabitant(int ID, String name) {
this.ID = ID;
this.name = name;

I

public String toString() {
return (name + 7, 7 + ID);
}i

public int compareTo(Inhabitant i) {
return (this.name.compareTo (i.name));
}i

// Used for containment checks
public boolean equals(Object i)
return (((Inhabitant)i).ID = this.ID);

import java.util.sx;
public class driver {

public static void displayCollection(Collection c) {
System.out.println(”Inhabitants: 7);
for (Object o: c) {
System.out.println(o);
}

};

public static void main(String|[] args) {
Collection<Inhabitant> c¢ = new TreeSet<Inhabitant >();
c.add (new Inhabitant (1138, ”"THX”));
c.add(new Inhabitant (3417, "LUH"));
c.add (new Inhabitant (1042, ”THX”));
c.add(new Inhabitant (5241, ”"SEN”));
displayCollection(c);

ArrayList<Inhabitant> list = new Arraylist<Inhabitant>(c);

Collections.sort(list, new Comparator<Inhabitant>() {
public int compare(Inhabitant pl, Inhabitant p2){
if(p1.ID < p2.ID) return(l);
if(pl1.ID > p2.ID) return(—1);
return (0) ;

s

>
displayCollection(list);
System.out.println(” Search: ” + list.contains(new Inhabitant (3417, "SEN”)));




(a) (20 pts) What output does the program produce?

(b) (10 pts) Briefly explain a reason for using a LinkedList instead of a TreeSet for
Collection c.



