
Programming Structures and Abstractions (CS 2334)
Lab 3: Searching and Sorting

September 15, 2010

Due: Friday, September 17, 2010, 11:29am

Group members (same as for your project):

Objectives

By the end of this lab, you should be able to:

1. analyze the class structure of an existing java program using UML diagrams,

2. extract and store sensor data from the Finch,

3. employ abstract classes to provide generic programming functionality, and

4. search the Finch “data streams” for key values.

Problem Context

Weather monitoring systems, spacecrafts and boarder security systems share the common
problems of extracting data from a sensor “package” (collection of different sensors), storing
this information in some organized fashion, and then later manipulating this information
to find key patterns. In this project, we will be “logging” data obtained from our Finch

1



and then searching the set of samples for occurrences of minimum, maximum, and median
values.
Specifically:

� We will take a sample of data at regular (100 ms) intervals for 10 seconds (so, 100
samples).

� Each sample is a tuple that contains the values from the light, acceleration, obstacle
and temperature sensors.

� Both the light and obstacle sensors contain two channels: one on the left hand side of
the head and the other on the right hand side. Light is measured in an arbitrary unit
(brighter is encoded with larger numbers). The obstacle sensor is boolean.

� The acceleration sensor contains 3 channels: X, Y and Z and measures acceleration in
units of g. Note that the sensor will also capture the acceleration due to gravity, so if
the Finch is not moving, then this sensor will tell you which direction is “down”.

We will be reporting the sample that corresponds to the minimum, maximum and median
sample in the set. However, we are faced with the question of: “how do we find the minimum,
maximum and median of a sample?” One way to accomplish this is to first sort our samples
(e.g., using our sort() method from the book that relies on classes that implement the
Comparable interface). Then, we can take the first, last and middle samples from this
sorted list as the minimum, maximum and median samples.

But: what does it mean to sort() our samples given that each sample is composed of
multiple variables? How do we tell which one is larger than another? What we want to be
able to say is: sort on the Z component of the acceleration vector or sort on the brightness of
the right hand side light sensor. How can we do this and yet still maintain a generic solution
to problem of sorting?

Our solution is to define a new interface, Comparable2, that requires the implementing
class to provide the following method:

public int compareTo2(Object obj, VariableType var);

This method call is similar to compareTo(), except that it adds a second argument that
encodes which variable (or combination of variables) that we should be comparing (and
ultimately sorting on).

2



Milestones

Milestone 1: Analyze a Class Structure

From the class web page, go to the lab3 directory. Download the Lab3.zip file and import
it into Eclipse as a new project. This project file includes several java class and interface
implementations, as well as the associated javadoc.

Using the javadoc documentation and the source files, draw a UML diagram that captures
the details of the individual classes and their relationships. For a nice summary of UML
notation see:
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/

In your UML diagram, you should:

� Detail the interfaces: include the interface names and the abstract method prototypes.
Preface interface names with the text: “<< interface >>” and preface abstract meth-
ods with “<< abstract >>” (since it is hard to hand write in italics).

� Detail the classes: include the class name, variable definitions and method prototypes.
Use the notation above as necessary.

� Detail the relationships between the classes and interfaces (see your book or the URL
above for notational hints). In particular, you should express:

– class/interface inheritance, and

– dependency of classes on interfaces and other classes.

3



Milestone 2

Examine the implementation of sort() in sensorDriver.java. Describe the essential differences
between this implementation and the one in your book (available in handout form in the
class).

4



Milestone 3

The implementation of the program is missing one component: the full implementation of
FinchSensor.compareTo2(). Add the missing code:

� compareTo2() should return one of three values: 1, 0 or -1. The return value depends
on the ordering of this and sensor (see the code).

� The instance variable to compare (to determine the ordering) of this and sensor is
encoded by the local variable var (which is a SensorType in our case). Note that
in one case, SensorType.ACCEL MAG, the comparison is based on a combination of
multiple instance variables.

For example, suppose that:

this.acceleration[2] has a value of 0.9

sensor.acceleration[2] has a value of 0.2

var is equal to SensorType.ACCEL_Z

then:

the return value will be 1.

This is the case because var == SensorType.ACCEL Z tells us that the 3rd element of the
acceleration vectors should be compared.

Hints:

� You can use the var.equals() method (provided by the Object class) to compare two
SensorTypes

� We have supplied the helper methods:

private int compareTo(int a, int b);

private int compareTo(double a, double b);

private double arrayMagnitude(double[] vec);

After you have compiled your program, you should execute it. First, attach the Finch
to your computer. Then, start your program. Data recording starts when the nose turns
red. Before advancing to the next milestone, you should convince yourself that your pro-
gram is working properly (think about what would convince you). You may make minor
modifications to main() to perform these checks.

5



Milestone 4

Return the main() method to its original state.
With your Finch sitting wheels down, execute your program. While recording, cover

the light sensors and accelerate the Finch upwards. Then: accelerate the Finch downwards.
Uncover the light sensors and allow the program to complete.

After recording is complete, the program will report the raw values in order. In addition,
the program will find the samples with the min, max and median ACCEL MAG values and
print out the entire sample. Write down these latter numbers (not the 100 raw samples).
Given the movement of your Finch, what interesting correlations do you see? (some channels
will show interesting correlations, while others will not)

6



Milestone 5

With your Finch sitting wheels down, execute your program. Cover the light sensors. Then,
cover the obstacle detectors for a couple seconds. Finally, uncover the obstacle detectors and
then unover the light sensors.

Again, write down the values for the samples of the min, max and median channel values.
What interesting correlations do you see?

7



What is Due ...

All materials are due: Friday, September 17, 2010, 11:29am

Hand in the following:

� a copy of your UML diagram (hard or soft copy will do),

� a copy of this handout containing the provided answers, and

� an electronic copy of your modified code (to D2L).

NOTE: ONLY HAND IN ONE COPY PER GROUP. The dropbox is now configured
so that you can see the submissions of your lab partner.

Demonstration:

� See one of the TAs.

� Demonstrate your program given the requested sequence of movements of the Finch.

8


