
CS 2334: Lab 4
Generics and Collections

Lab 4 Objectives

By the end of this lab, you should be able to:
1. use Java Lists (specifically, the ArrayList

class) to store and manipulate a list of
objects of a specified type,

2. create Comparator object classes that
enable a sorting of the ArrayList in
different ways

3. use the ArrayList to compute statistics
over the objects stored in the list

Collections, Lists, and Sets
• Collection is an interface that captures the

notion of a group of objects, and specifies
some operations upon them

• List and Set are both subinterfaces of
Collection
– A List is an ordered collection of objects

• Can have duplicate elements
– A Set is a collection of objects with no

duplicate elements
• No meaningful notion of object order

List Operations

• Using a List, one can (among many
things):
– Append an object
– Add an object at a specific location
– Return an object at a specific location
– Remove an object at a specific location

• For full details, consult the Java API

Concrete Implementations of Lists

• ArrayList<E>
• LinkedList<E>
• Stack<E>
• Vector<E>

ArrayList Example
ArrayList<String> lst = new ArrayList<String>;

lst.add(“a”); lst.add(“b”); lst.add(“c”);
// At this point lst = [“a”,“b”,“c”]

lst.add(“d”); // lst = [a, b, c, d]
lst.add(2,“e”); // lst = [a, b, e, c, d]
lst.set(4,“g”); // lst = [a, b, e, c, g]
lst.get(4) // Returns “g”
lst.indexOf(“e”) // Returns 2
lst.remove(4); // lst = [a, b, e, c]
lst.remove(“e”); // lst = [a, b, c]

Iterators
• Iterators provide the means to enumerate the

elements of a collection
• Iterators encapsulate the details of a particular

data structure, and present the user with a
uniform interface

• Example: a List can be enumerated by starting
at the front of the List, then moving from one
element to the next, until the end of the List is
reached.

• How does one enumerate the elements of a
tree?

The Iterator Interface

Iterator defines the following methods:
• next() – returns the next item in the

collection
• hasNext() – the iterator has a next element

to return
– I.e., there are still more elements to iterate

through
• remove() – removes the last element

returned by the iterator
– This is optional; don’t worry about it for now

Using Iterators
ArrayList<String> lst = new ArrayList<String>;
ListIterator li;

lst.add(“a”); lst.add(“b”); lst.add(“c”);

li = lst.iterator();
li.hasNext() // Returns True
li.next() // Returns “a”
li.hasNext() // Returns True
li.next() // Returns “b”
li.hasNext() // Returns True
li.next() // Returns “c”
li.hasNext() // Returns False

li.next() // Run-time Exception!!

Implicit Iterators

• Iterators can be used implicitly with the For-Each
syntax

• Formal example:
for (T x: lst){

foo(x);
}

– There is a collection lst
– For each element x in lst of type T, call foo(x)

• The For-Each syntax implicitly refers to the
iterator of lst, so the user doesn’t have to

Implicit Iterators (cont.)

• Consider the ArrayList<String> lst again,
where lst contains [“a”, “b”, “c”]

• When the following code is executed,
for (String s: lst){

System.out.println(s);
}

The following output is printed:
a
b
c

Comparable Interface
• The Comparable interface defines an ordering

by which a List of objects can be sorted using:

ArrayList<String> lst = new
ArrayList<String>;

// Add some elements to lst

Collections.sort(lst);
// lst is now sorted

• The compareTo() method defined by String
determines a natural ordering of the String
objects

Comparators

• However: we may wish to sort objects
differently in different contexts

• Example: a list containing student
information objects may be sorted by
either height, age or shoe size

Comparators (cont.)

• We want to be able to define different
orderings without having to change our the
class implementation

• Comparators allow the ordering of objects
to be decoupled from the implementation
of those objects

• A comparator induces a new order upon a
collection of objects

Comparators (cont.)

• A comparator extends the Comparator
interface
– public int compare(Object o1, Object o2)

• If o1 is to be ordered before o2, then
– c.compare(o1,o2) < 0

• If o1 is to be ordered after o2, then
– c.compare(o1,o2) > 0

• Otherwise (they are equal)
– c.compare(o1,o2) == 0

Comparators (cont.)

• There is also a generic form of Comparator
• Syntax:

Comparator<T>

• For example, from Lab4:
SensorComparator implements Comparator<FinchSensor>

• This will allow for generic code and compile
time checking

General “To Do”

• Download Lab4.zip
• Analyze the code (and draw the UML diagram)
• Answer questions for Milestone 2
• Provide implementations for:

TemperatureComparator, ZaccelComparator,
AccelComparator, and LightComparator
– Implement compare, doubleValue, and toString

• Implement median() and mean() in sensorDriver
• Perform experiments
• Demonstrate

