
CS 2334 Lab 8
Exceptions

• Exceptions provide a means of handling 
error conditions that arise in the course of 
program execution

• Example: The program prompts the user 
for a filename, and the use provides a 
nonexistent file
– Should the program crash?
– Or would it be better to notify the user and ask 

again?



Handling Exceptions
Exceptions can be handled robustly using the try-

catch-finally syntax
• try: execute some code that may throw an 

exception
• If an exception is encountered, immediately start 

executing code in catch
• finally:

– If no exception is thrown, execute after all code in the 
try block has executed

• Execute after a return() in the try block before returning
– If an exception is thrown, execute after all code in the 

catch block has executed



Handling Exceptions (cont.)
try{
foo();
thrower(); // might throw an exception
bar();

}
catch (Exception e){
caught();

}
finally {
baz();

}



Throwing Exceptions

• Exceptions can be thrown using the throw
statement:
– throw exception

• exception is an instance of an Exception class

• Example:

throw new IllegalArgumentException(“Value of 
x should be greater than 5”);

• Exceptions can even be thrown from within a 
catch block



Catching Multiple Types of 
Exceptions

• A block of code may throw more than one 
type of exception

• Multiple catch blocks can be used to 
handle different types of exceptions that 
might be thrown from within a try block

• Only one catch block is executed per 
exception thrown within a try block

• The first catch block to match the thrown 
exception is the one executed



Catching Multiple Types of 
Exceptions (cont.)

try{
thrower1(); // might throw ArithmeticException
thrower2(); // might throw ArrayIndexOutOfBoundsException

}
catch(ArithmeticException e){

foo();
}
catch(ArrayIndexOutOfBoundsException e){

bar();
}
catch(Exception e){

baz();
}



Utilizing Caught Exceptions
• When an exception is thrown, we may wish to 

identify where the exception originates, for 
debugging purposes

• We can use the following function call:

catch (Exception e){
e.printStackTrace();

}

java.lang.IllegalArgumentException: Bad 
parameter
at Main.thrower(Main.java:99)
at Main.exceptionTest(Main.java:105)
at Main.main(Main.java:125)



Assertions

• An assertion is a statement that allows the 
programmer to test certain assumptions 
about some code

• If the assumption is correct, nothing 
happens

• Otherwise, an error is thrown

• Can be used to check preconditions and 
postconditions for some methods



Assertions (cont.)
• The syntax of assertions is as follows:
assert Expression;

• Expression is some Java expression that returns 
a boolean value

• For example:
int i = 5;
String s = “Hello World”;
…
assert i > 0;
assert s.equalsIgnoreCase(“Hello World”);
assert 1 == 2;



Assertions (cont.)
assert Expression;

• If Expression evaluates to true, nothing 
happens

• If Expression evaluates to false, an 
AssertionError is thrown



Errors vs. Exceptions

• Exceptions indicate an error condition that 
a reasonable application might want to 
handle
– E.g.: a user-specified file is not found

• Errors indicate serious problems that a 
reasonable application should not try to 
handle
– The Java virtual machine has run out of 

memory



Assertions (cont.)

Assertions throw Errors
• Thus, assertions should not be used to indicate 

problems within the scope of normal program 
execution
– Assertions should indicate conditions that should 

never occur if the program is functioning properly
– Assertions are generally removed from released 

software
• Exceptions should be used to indicate problems 

that can reasonably be expected to occur in 
various circumstances



Conventions for Using Assertions

• Don’t use assertions to check public 
method preconditions (i.e., that 
parameters have acceptable values)
– Instead: use exceptions

• You can use assertions to check nonpublic 
method preconditions

• You can use assertions to check 
postconditions on any method



Lab 8

• Modify your existing Project 3 code to add 
exception handling

• By the end of this lab, you should be able 
to:

1. Create exception classes
2. Throw exceptions to indicate errors
3. Catch exceptions to yield robust behavior



Milestone 1

Create a FinchException class
• Extends Exception
• Contains a string that describes the error
• Implements toString()



Milestone 2

Throw FinchExceptions
• Must be thrown in response to illegal 

constructor parameters for all 
FinchActions

• FinchOrientationGuarded and 
FinchObstacleGuarded
– If the orientation/obstacle type string is wrong, 

throw an exception
• Implementation should be straightforward



Milestone 3

Catch FinchExceptions
• Create a completely new driver class
• main() should attempt to create a set of 

FinchActions
– Some constructor calls should contain illegal 

parameters, others shouldn’t
• Report each thrown exception
• Add successfully created FinchActions to 

a FinchActionList



The General “To-Do”

• Work on Lab 8 Today (avoid Project 4)
• Lab is due at 11:29 AM on Friday, 

November 12th

– Demo
– Electronic Submission



Testing…

In the driver, for each FinchAction:
• Make a good constructor call
• Make a bad constructor call that does one 

of the following:
– Too many/few parameters
– Invalid orientation values
– Invalid obstacle values
– Invalid number formatting (if parsing strings)



Installing JBuilder



Choose JBuilder 2008 R2



Choose an install path



Choose where the shortcuts go



Select your workspace folder



Choose to load an activation file



Select the slp license file



Finish up and restart JBuilder



Create a new Java project
(the same as using Eclipse)



Make sure modeling is enabled



Right click on your project and 
“Enable Java Modeling”



This window pops up 
(just hit ok)



Open the Modeling Perspective



Create a New Class Diagram



Use the class tool to 
create new classes



Drag existing classes onto the 
Class Diagram to add them



Tada!


