Programming Structures and Abstractions (CS 2334)
Project 3

October 13, 2010

Introduction

Serialization. When executed, many of our programs create a set of objects in order to
represent something with which we perform some computation. When the program stops
executing, the memory that is used to store these objects is reclaimed for use by other
programs (and hence the objects disappear). However, there are many situations in which
the objects need to have some lifetime beyond the execution of our program. For example, the
objects might form some database that we will want to query in the future. Or, the objects
may be shipped to another computer on the network so that new work can be performed on
them. In either case, the objects now have the property of persistence that extends beyond
our program.

We have several ways of making objects persistent: we can write them into files or send
them off to another computer on the network. In either case, the objects must be broken
down into the fundamental unit of storage in the computer: the byte (or the bit, depending
on your perspective). This process of transforming an object into a sequence of bytes for
storage or transmission is called serialization. Before object oriented languages, serialization
was performed in large part by the programmer, who had to explicitly break each component
object into a specific sequence of bytes. This is particularly challenging when an object
contains a reference to another object. In Java, we have a variety of abstractions that allow
us, as programmers, to think/program at the level of objects, rather than their component
pieces. In this project, we will make use of these facilities to store objects (specifically,
FinchActionLists) in files so that they may be easily retrieved in the future.

Extending the Java API. Until this point, we have maintained a separation between
the classes that we design and the classes that are defined by the Java API. For example,
if a class of our own design involves a Map, then we declare an instance variable in our
class that refers to a Map object. If our own class is conceptually a Map itself (with some
added features), this approach is a bit awkward: our own class must expose, through its
accessors/mutators, all of the key functionality of the internal Map.

On the other hand, it is possible for us to create new classes that extend the Java API
classes. This ability is very powerful because it allows us to maintain the power of the classes
themselves, but to customize their behavior to fit our particular needs. So, declaring our new
class as extending a Map automatically endows our class with all of the features (including



methods) of the Map. As programmers, we are then left to simply add the new functionality.
We will explore this idea in project 3 by changing our implementation of FinchActionList
so that it extends a form of LinkedList. This idea will also be very prominent as we explore
the Java Graphical User Interface facilities in the coming weeks.

Objectives

By the end of this project, you should be able to:

e extend a class that is provided by the Java API to create a new class with custom
functionality,

e read/write Java objects from/to a file,

e combine multiple collections of objects together to form a new collection (e.g., by
“merging” the collections).

Milestones

1. Use a LinkedList to represent FinchActionList (15 pts)
2. Show/execute FinchActions in both natural and reverse order (10 pts)
3. Add user command write that writes the FinchActionList out to a binary file (10 pts)

4. Add user command read that reads a new FinchActionList from a binary file (10
pts)

5. Add user commands union and intersect that combine the existing Finch A ctionList
with a newly read one (15 pts)

Other components:

e Develop and use a proper design (UML and class stubs) (15 pts)

e Use proper documentation and formatting (javadoc and in-line documentation) (15
pts)

e Perform a short demonstration of your work (10 pts)

e Extra credit is possible — see below (up to 5 pts)

Note: of the design and documentation components, a total of 15 points are available
during the design phase (7.5 points for each for the UML and the code stubs). The remaining
85 points are obtainable for the final submission of the project.



This lab is due in two phases:

1. Thursday, October 21" at 5:00pm: design.

2. Thursday, October 28" at 5:00pm: completed program and short demonstration. The
early deadline, for a 5% bonus, is Tuesday, October 26! at 5:00pm.

More details for what to hand-in and when may be found below.

Resources
Main web page / projects / project3 :
e project3.pdf: this project description

e project3-slides.pdf: a copy of the lab section slides

Input Files

We will keep the same input text file format as we used with project 2.

Milestones

Milestone 1: LinkedLists to represent FinchActionLists

Change your FinchActionList implementation so that it uses LinkedLists (instead of an array
of FinchActions). Specifically:

e Declare FinchActionList class as follows:

public class FinchActionList extends LinkedList<FinchAction> implements Serializable

This declaration makes FinchActionList a subclass of LinkedList — in other words,
an instance of FinchActionList IS an instance of LinkedList. From within this new
class, you will be able to invoke the methods provided by the parent class.

e Alter the set of properties that are explicitly contained within the FinchActionList
(note that the key properties will now be handled by the LinkedList class).

e Alter FinchActionList so that it provides just the functionality that is required above
and beyond LinkedList (i.e., you will have to remove or update some of your FinchAc-
tionList methods). For example, sort() now can use the implementation provided by
the Collections class.

e Add a FinchActionList constructor that adheres to the following prototype:



public FinchActionList (FinchActionList list, String name)

This constructor creates a new FinchActionList that contains only those FinchA c-
tions in list that match name.

e Alter FinchAction to implement Serializable:

public abstract class FinchAction implements Comparable<FinchAction>, Serializable

e Eclipse will raise a warning about not defining serialVersionUID. This is a static
variable that is used to check the compatibility between the current class definitions
and the files. To make this warning go away, add the following to FinchActionList and
all of your concrete child classes of FinchAction:

static final long serialVersionUID = 1138L;

The value that you use is not particularly important for our purposes (though you
should understand the cultural importance of that particular number)...

e Create a Milestonel.java file that tests the functionality of your new implementation
of FinchActionList.

Milestone 2: Show/execute FinchActions in reverse order

In project 2, we defined a natural order to our FinchActions, and we defined methods to
display and execute our actions in the natural order. Here, we will add functionality that
allows a user to request that a list of actions be displayed /executed in reverse order.

Specifically:

e In your FinchActionList class, alter the implementations of the display() and execute()
methods so that they adhere to these prototypes:

public void display(String name, boolean reverse)

public void execute(Finch myFinch, String name, boolean reverse)

The reverse parameter indicates whether the FinchActions should be displayed (or
executed) in natural (false) or reverse (true) order. Natural order will still be deter-
mined by the Comparable property of the FinchActions.

e Create a Milestone2.java file that tests the functionality of these two new method
implementations.

e In your driver class, allow the user to indicate whether to show /execute FinchActions
in natural or reverse order.



Notes:

e execute() and display() perform the same set of operations — from the perspective of
iterating through a list and checking to make sure that a name matches. This suggests
that their core functionality should actually be built into a single method (as opposed
to replicating it in two methods).

e LinkedList provides another type of iterator that will help in the implementation of
the newly requested functionality.

In all, you should be able to implement display/execute and forward/reverse using a
single loop.

Milestone 3: Add a “write” user command
In this milestone, we will add the ability for the user to write a FinchActionList to a file.
Specifically:

e Add the following method to FinchActionList:

public void write(String fname, String actionName)

This method will open the specified file as an ObjectOutputStream, write the ele-
ments of the list that match actionName to the file, and close the file.

Hints:

— Remember that FinchActionList already provides the facilities to create a list
that matches a String name.

— You will only have to write a single object to the file.

e Give the user the ability to specify a write command from your text interface. The
user can optionally specify the name with which to filter. Examples:

4

— If the user types “write foo.dat” at the command line, then all FinchActions in
the existing FinchActionList will be written to the file “foo.dat”

4

— If the user types “write foo.dat dance” at the command line, then all FinchAc-
tions with a name of “dance” in the FinchActionList will be written to the file
“foo.dat”

Milestone 4: Add the “read”’ user command

e Add the following constructor to FinchActionList:

‘public FinchActionList (String fname) throws IOException




This method will read a FinchActionList from the specified file. If there is an error,
then it should throw an IOException (more on this soon).

e Create a Milestone4.java file that creates a small number of FinchA ctions, inserts
them into a FinchActionList, writes them to a file, reads the list from the file, and
displays the recently read list.

e Give the user the ability to read from text interface. Example:

— If the user types “read foo.dat” into your text interface, then the newly read
FinchActionList will replace the existing one.

Milestone 5: Add the “union” and “intersect” commands

e Add the following method to FinchAction:

‘ public boolean equals(0bject o)

This method returns true if this and o are the same according to compareTo. You may
assume that it is safe to cast the object to FinchAction. This method is used by
methods such as Collection.contains().

e Add the following methods to FinchActionList:

public FinchActionList union(String fname) throws IOException

public FinchActionList intersect(String fname) throws IOException

These two methods will first read a new FinchActionList from the specified file. For
union(), the returned FinchActionList is the combination of this and the newly read
list, with any duplicates removed.

For intersect(), the returned FinchActionList contains only those FinchActions
that exist in both this and the newly read list.

For both methods: they must not alter this. Instead, any changes must be made to
the newly created FinchActionList.

Hints:

— Collection.addAll() is useful for adding all of the elements from one collection to
another.

— If a list is sorted by natural order, then duplicate entries will occur next to
each other in the list. Duplicate entries can be identified using the compareTo()
method.

— Collection.contains() is useful for finding out whether an object exists within a
collection.



— Iterators are your friend. Carefully examine the methods that they provide.

e Create a Milestone5.java file that tests the functionality of these two new methods
(suggestion: follow the same strategy as with the previous milestone).

e Give the user the ability to union and intersect from the text interface. Examples:

— If the user types “union foo.dat” into your text interface, then the existing Fin-
chActionList will be replaced by a list that combines the existing one with the
newly read one (i.e., the current list will be replaced by the one returned by

union()).

— If the user types “intersect baz.dat” into your text interface, then the existing
FinchActionList will be replaced by a list that contains only those FinchAc-
tions that exist in both the current list and the newly read one (i.e., the current
list will be replaced by the one returned by intersect()).

Extra Credit

An additional 5 points (out of 100) are available for functionality that we do not explicitly
request in this assignment. Possible additions include:

e Add a command that allows a user to specify that all selected actions change their
priority by some specfied amount (e.g., add 9 to all of the priorities of actions that
match a particular name).

e Move your text file reading procedure into a constructor of FinchActionList. Note
that you will have to deal with one constructor that takes a file name parameter that
can either be a text or a binary (object) file.

e Add load command that allows the user to load a new text file into the current Fin-
chActionList (or modify read to handle both text and object files).

Hand-In Procedures

Part 1: Design
Deadline: Thursday, October 215 at 5:00pm

Each group must hand in one copy of each of the following:

1. A printed cover page that lists the group members, any outside citations, and a plan for
which group member will be primarily responsible for each class. Turn in the hardcopy
to the TA or the lecturer.

2. UML diagram on engineering paper: turn in the hardcopy to the TA or the lecturer.
The diagram must contain all of the relevant classes. However, only detail the
FinchActionList class (class variables and methods).

7



3. projectd_design.zip to D2L. This is the zip file produced by Eclipse that contains:

e Each of the classes with class variables, method header documentation and method
stubs (prototypes). If you are re-using methods from project 2, then it
is okay to leave these implementations intact. However, for any new
methods, only include dummy return calls or calls to this() or super(),
and not any other code.

e html description of your project produced by javadoc. Make sure to check that
the resulting html files contain all of the correct information.

Part 2: Complete program and short demonstration.

Deadline: Thursday, October 28" at 5:00pm. The early deadline, for a 5% bonus, is Tuesday,
October 26" at 5:00pm.

Each group must do the following:

1. Turn in a printed cover page that lists the group members, work contributed by each,
and any outside citations. Turn in the hardcopy to the TA or the lecturer.

2. Hand in the modified UML diagram on engineering paper: turn in the hardcopy to the
TA or the lecturer. The requirements are the same as for the design phase.

3. Turn in project3.zip to D2L. This is the zip file produced by Eclipse that contains:

e BEach of the class implementations with documentation. Do not include your
names in any of these files.

e html description of your project produced by javadoc.
4. A short demonstration. We will reserve time during your laboratory section for you

to demonstrate your working program. You may also attend office hours or make
appointments to perform the demonstrations.

General Hints and Notes

e Your program must be your own work. Do not discuss or look at the solutions of other
groups in the class. However, you may discuss general issues (i.e., not directly related
to the project requirements) with your classmates, as well as use the book and the
resources available on the net.

e Start your work early. This is not a trivial programming assignment.

e Ask for help early. If you are stuck on something, talk to the TA or the instructor
sooner than later (this is what we are here for).



