
Programming Structures and Abstractions (CS 2334)
Project 5

December 8, 2010

Introduction

Recursion is a powerful tool for implementing solutions to some complex problems, from
searching for the next best game move to drawing fractals. This project is an extension of
project 4 in which we will define a new type of FinchAction, FinchMeta, that consists of
sequences of FinchActions. This recursive meta action will allow us to draw simple fractal
structures with our Finch.

NOTE: This project must be done individually. You may start from your group’s
implementation of project 4. However, there may be no project-specific interactions between
individuals for project 5.

Objectives

By the end of this project, you should be able to:

1. design and implement recursive data structures and programs, and

2. use the recursive nature of our FinchActions to create interesting Finch programs.

Milestones

1. Implement the scaled execution method for all FinchActions and for the FinchAc-
tionList (20 pts)

2. Implement the FinchMeta action class that will contain a sequence of FinchActions
(20 pts)

3. Update the FinchActionDialog class (20 pts)

4. Write your own FinchAction text files (10 pts)

1

Other components:

� Describe the details of your FinchMeta class using a detailed UML diagram. Only
show the directly related classes (these latter classes may be abbreviated) (5 pts)

� Use proper documentation and formatting (javadoc and in-line documentation) (15
pts)

� A short demonstration (10 pts)

Other notes:

� You must extend the provided abstract class (FinchModelAbstract.java). This class
may not be edited. (note: exceptions may be granted by the instructor if appropriate
reasons are given)

� You must write your own code for the GUI component layout (no tools may be used
to automatically generate this code).

� Implement and test incrementally. Doing the implementation in the order of the mile-
stones will help you do this.

All components of this lab are due on: Thursday, December 9th at 5:00pm. More details
for what to hand-in and when may be found below.

Resources

Main web page: see section on project 5

Main web page / projects / project5

� project5.pdf: this project description

� Abstract class definition: FinchModelAbstract.java (replace the project 4 class with
this one)

� *.txt: example input files

Input Files

We will keep the same input text file format as with the previous projects. However, the
text file format now has two additional options:

META <name> <priority> <filterName> <scaleFactor>

SMOVE <name> <priority> <duration> <left distance> <right distance>

2

where:

� filterName is a string that will be matched against the names of the actions in the
master FinchActionList.

� scaleFactor is a double in the range [0 .. 1] (exclusive) that specifies how much smaller
the child actions are than the current meta action.

Milestones

Milestone 1: Scaled Actions

1. Implement for all actions (existing and new):

pub l i c void execute (Finch myFinch , boolean reverse , double scale)

The default behavior for this method is to simply call: execute(Finch myFinch).
Note: think carefully about how to simply implement this default behavior.

2. Create a new class, FinchMoveScaled, that extends FinchMove. In FinchMoveScaled,
provide an implementation of:

execute (Finch myFinch , boolean reverse , double scale)

This implementation will be essentially the same as the original execute(Finch myFinch)
implementation, except: the commanded wheel velocities are equal to
FinchMoveScaled.velocity * scale (note that the reverse parameter is note used).

3. Add FinchMoveScaled to your text file parser.

4. In FinchActionList, provide an implementation of:

execute (Finch myFinch , String name , boolean reverse , double scale)

As the individual actions are executed, these parameters are passed to each of them.

5. In FinchModel, provide an implementation of:

execute (String name , boolean reverse , double scale)

This method should now be called as a result of pressing one of the Execute buttons
in the GUI.

3

Milestone 2: FinchMeta

Implement a FinchMeta action class that extends FinchAction. Unlike our other Fin-
chActions, FinchMeta is a “meta action”: executing it results in the execution of a sequence
of FinchActions. The FinchActions to be executed are those in the master FinchAction-
List whose names match the filterName string.

For this class:

� Property filterName is a String.

� Property scaleFactor is a double.

� Property model is a reference to the FinchModel instance.

� Provide one constructor that accepts the name, priority, filterName, scaleFactor and a
reference to your FinchModel object.

� Define a constant scaleMin that specifies the smallest allowable FinchMeta object
to execute.

� Provide the execute methods for this class (the one with scale is the most important).

� Add FinchMeta to your text file parser.

The specific rules of execution are:

� Display the string “**Entering FinchMeta: Scale = ” + scale

� Terminal case: the specified scale is less than minScale. If this is the case, then no
child actions will be executed.

� Recursive case: the specified scale is greater than or equal to minScale. If this is the
case, then the actions of FinchModel that match filterName are executed, with a
scale of scale * scaleFactor.

� Display the string “##Leaving FinchMeta: Scale = ” + scale

Milestone 3: Add the new FinchAction to ActionDialog

Add the FinchMeta class to your action dialog box. This may require reorganization of your
box (I had to go to 2 columns).

Milestone 4: Create Your Own FinchAction Lists

Using meta actions, create (at least) two interesting recursive text files. Be ready to
demonstrate these.

4

Hand-In Procedures

Deadline: Thursday, December 9th at 5:00pm

Each individual must do the following:

1. Turn in UML diagram (paper or electronic form).

2. Turn in project5.zip to D2L. This is the zip file produced by Eclipse that contains:

� Each of the class implementations with documentation.

� html description of your project produced by javadoc (including private compo-
nents).

� Copies of the text files containing your recursive programs.

3. A short demonstration. We will reserve time during your laboratory section for you
to demonstrate your working program. You may also attend office hours or make
appointments to perform the demonstrations. In addition, you may demonstrate during
the CS Department’s Poster Session on Friday, December 10th, 3:00-5:00 in the Devon
Hall first floor atrium.

General Hints and Notes

� Your program must be your own work. Do not discuss or look at the solutions of
any other individuals in the class. However, you may discuss general issues (i.e., not
directly related to the project requirements) with your classmates, as well as use the
book and the resources available on the net.

� Start your work early.

� Ask for help early. If you are stuck on something, talk to a TA or the instructor sooner
than later (this is what we are here for).

5

