
Lab Exercise 11
CS 2334

November 5, 2015

Introduction

In this lab, you will extend your knowledge of creating graphics in Java. Specifically,
you will experiment with using KeyListeners and KeyEvents to construct graphics
programs that react to keyboard button presses that are made by a user.

The game that you are completing requires the player to move through a shifting
maze by pressing the right and left keys arrow keys. The player must stay within
the unoccupied area of the screen. If the player is caught by a moving wall, then the
player loses the game.

Learning Objectives

By the end of this laboratory exercise, you should be able to:

1. Create event-driven graphics

2. Use a KeyListener to update graphics based on KeyEvents

3. Read existing code and documentation in order to complete an implementation

1

Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

Preparation

1. Import the existing lab11 implementation into your eclipse workspace.

(a) Download the lab11 implementation:
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab11/lab11-initial.

zip

(b) In Eclipse, select File/Import

(c) Select General/Existing projects into workspace. Click Next

(d) Select Select archive file. Browse to the lab11-initial.zip file. Click Finish

2

http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab11/lab11-initial.zip
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab11/lab11-initial.zip

Game: OU vs UT

Below is an image of the graphical user interface for the game that we are creating.

The OU image represents the player. The rows of longhorns are walls through
which the player cannot pass. These rows shift downwards at regular intervals. The
goal is to move the player into a free position before the wall overtakes the player.
This will be done by moving the player right or left using the right and left keys on
the keyboard.

Note: the player can wrap around the window to get to the other side.

3

UML

GameRow

-isEmptySpace:boolean
-freePosition:int

+GameRow()
+GameRow(freePosition:int)
+isEmptySpace():boolean
+getFreePosition():int

GameView

-width:int
-height:int
-rows:ArrayList<GameRow>
-score:int
-playerPos:int
-ouImage:Image
-utImage:Image

+GameView(width:int, height:int)
+draw(g:Graphics):void
-drawRow(y:int, blockWidth:int,
 blockHeight:int,
 row:GameRow, g:Graphics):void
-drawPlayer(blockWidth:int, blockHeight:int,
 g:Graphics):void
+getBottomRow():GameRow
+pushDown():void
+movePlayerRight():int
+movePlayerLeft():int
+playerIsDead():boolean
+getPlayerPos():int
+playerCanMove():boolean
+updateScore():void
+getScore():int

JPanel

GamePanel

-width:int
-height:int
-model:GameView

+GamePane(width:int, height:int)
+getGame():GameView
#paintComponent(g:Graphics):void

JFrame

GrameFrame

-panel:GamePanel

+GameFrame()
+getGamePanel():GamePanel

Driver

+main(args:String[]):void

*

1

1
1

Lab 11: Specific Instructions

All of the classes shown in the UML are provided in lab11-initial.zip.

1. Most of the classes are implemented. We want you to implement the graphics,
not the logic of the game. However, you need to analyze and understand the
game logic to implement the graphics.

4

� Driver, GamePanel and GameRow have been fully implemented. Read
and understand these classes before moving on.

� Implement a KeyListener in GameFrame

– When you implement the KeyListener, Java will require you to cre-
ate handler methods for three events types. Since you only need one
event type, it is okay to leave the other two methods with no body.

– Alternatively, you may implement a KeyAdapter, for which you
only need to override the one method of interest.

� Complete the implementation of GameView

– Most of the logic occurs in this class. Fully analyze and understand
the code before moving on.

2. Do not add functionality to the classes beyond what has been specified

3. Don’t forget to document as you go!

Final Steps

1. Generate Javadoc using Eclipse.

� Select Project/Generate Javadoc...

� Make sure that your project is selected, as well as all of the Java source
files

� Select Private visibility

� Use the default destination folder

� Click Finish

2. Open the lab11/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that that all of your classes are listed and that all of your documented
methods have the necessary documentation.

3. If you complete the above instructions during lab, you may have your imple-
mentation checked by one of the TAs.

5

Submission Instructions

� All required components (source code and compiled documentation) are due
at 11:59pm on Friday, November 6th.

� Prepare your submission file:

1. Select the project in the Package Explorer window.

2. Right-click. Select Export

3. Select General/Archive File

4. Expand your project and verify that both the src and doc folders are
selected, as well as all of their contents

5. Enter the archive file name: lab11.zip (note that you may want to browse
to a different destination folder)

6. Select Save in zip format

7. Click Finish

� Submit your zip file to the lab11 folder on D2L.

6

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Implementation: 35 points

Program formatting: 10 points

(10) The program is properly formatted (including indentation, curly brace
and semicolon locations).

(5) There is one problem with program formatting.

(0) The program is not properly formatted.

Data types and method calls: 15 points

(15) The program is using proper data types and method calls.

(10) There is one error in data type or method call selection.

(5) There are two errors in data type or method call selection.

(0) There are multiple errors in data type and method call selection.

Required Methods: 10 points

(10) All of the required methods are implemented.

(7) A component of one required method is missing.

(4) A method is not implemented or components are missing from two
methods.

(0) Two or more required methods are not implemented or components
from three or more methods are missing.

Proper Execution: 30 points

Output: 15 points

(15) The program passes all tests.

(10) The program fails one test.

(5) The program fails two tests.

(0) The program fails three or more tests.

Execution: 15 points

(15) The program executes with no errors.

(8) The program executes, but there is one minor error.

(0) The program does not execute.

7

Documentation and Submission: 35 points

Project Documentation: 5 points

(5) The java file contains all of the required documentation elements at
the top of the file.

(3) The java file is missing one of the required documentation elements.

(2) The java file is missing two of the required documentation elements.

(0) The java file is missing more than two of the required documentation
elements.

Method-Level Documentation: 10 points

(10) Every method contains all of the required documentation elements
ahead of the method prototype.

(7) The method documentation is missing one of the required documen-
tation elements.

(3) The method documentation is missing two of the required documen-
tation elements.

(0) The method documentation is missing more than two of the required
documentation elements.

Inline Documentation: 10 points

(10) Every method contains appropriate inline documentation.

(7) There is one missing or incorrect line of inline documentation.

(3) There are two missing or incorrect lines of inline documentation.

(0) There are more than two missing or incorrect lines of inline documen-
tation.

Submission: 10 points

(10) The correct zip file name is used and has the correct contents.

(5) The correct zip file name is used, but one required component is
missing.

(0) An incorrect zip file name is used or more than one required compo-
nent is missing.

8

