Lab Exercise 12
CS 2334

November 12, 2015

Introduction

In lab 10, we learned about creating drawings using primitive shapes. To produce
these shapes, we made use of low level graphics generation methods provided by the
Graphics class. The final drawing was created in the main() method by creating a
fixed sequence of shapes.

In this lab, we will introduce a Graphical User Interface that will enable a user to
create a drawing using any list of shapes. For any given shape, the user will be able
to select the type of shape, its color and whether the shape is filled. The position
and size of the shapes will then be determined by the user’s clicking and dragging in
the drawing panel. In addition, the GUI will provide a File Menu that enables the
user to load and save drawings, create a new drawing, and exit from the program.

Learning Objectives

By the end of this laboratory exercise, you should be able to:
1. Create a drop-down menu for a graphics frame
2. Attach actions to drop-down menu items

Interact with the user with appropriate pop-up dialog boxes

= W

Open files for reading and writing object-level data

5. Draw a set of primitive shapes on a panel

Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

Preparation

1. Import the existing lab12 implementation into your eclipse workspace.

(a) Download the lab12 implementation:
http://www.cs.ou.edu/~fagg/classes/cs2334/1labs/labl2/1labl2-initial.

zip
(b) In Eclipse, select File/Import
(c) Select General/Ezisting projects into workspace. Click Next
(d) Select Select archive file. Browse to the lab12-initial.zip file. Click Finish

http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab12/lab12-initial.zip
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab12/lab12-initial.zip

Drawing with Shapes

Below is a picture of the graphical user interface after a partial drawing has been
completed:

OU Draw 4+ _ O X
File

Shape

i oval
 rectangle
@ triangle
Color

wIfill

Actions

The control panel to the right allows the user to do the following:

e Select between one of three shapes: oval, rectangle and triangle
e Determine whether the shape is to be filled or not
e Selects the color with which to be drawn

e Delete the most recently created shape

Mouse events within the drawing panel lead to the following behavior:

e Pressing mouse button down: the current cursor position determines the first
corner of the object to be drawn

e Moving the cursor while pressing down: the current cursor position determines
the second corner of the object. A temporary object is drawn to show the user
what it would look like if the choice is made final

e Lifting up from the mouse button: the current cursor position determines the
second corner of the object. A new object is added to the official list of objects

Note that the first and second corners may have any relative relationship. It is
also useful to be able to describe the upper-left (UL) and lower-right (LR) corners.
The position and extent of the three different objects is determined as follows:

e Rectangle and oval: the position property of these shapes corresponds to the
UL corner. The width and height (or diameters) of these shapes is determined
by the difference between the UL and LR corners.

e Triangle: we are only considering right triangles that are axis-aligned (each of
the legs of the right angle aligns with either the X or Y axis of the figure).
The first corner specified by the user defines the location of the vertex with the
right angle. The difference between the first and second corners specifies the
width and height of the triangle.

The graphical user interface also includes a file menu:

OU Draw + -0 X
File .
New
Open
Save
Exit

Shape
 oval

' rectangle
@ triangle
Color

wIfill

Actions

The actions for the file menu are:

New: after confirming with the user, clears the drawing

file. Errors are indicated with pop-up dialog boxes

Open: after prompting the user for a file to open, a drawing is read from the

Save: after prompting the user for a file to which to save, the drawing is

written to the file. Errors are indicated with pop-up dialog boxes

UML

Exit: the program exits immediately

The UML for this lab is given below. Half of the classes are from lab 10 and do not
require changes. The green classes are new or have been modified to some degree.

DrawFrame "

“drawPanel:DrawPanel -y0:int

«inners. -controlPanel:ControlPanel xL:int

Fiemenuar | “imnen—<| I > Drim
“menu:IMenu 1 +DrawFrame()

-menuExit:JMenultem
-menuOpen:JMenultem
-menuClear:JMenultem

ActionListener

enuSave:JMenultem
/T—hlechuus JFileChooser
\—‘ :

ControlPanel

-shapePanel:JPanel
-colorPanel:JPanel
-actionPanel:JPanel
-ovalButton:JRadioButton
-rectangleButton:JRadioButton
-triangleButton:JRadioButton
-group:ButtonGroup
fillBox:JCheckBox
-colorChooser:JButton
~color:Color
-undoButton:JButton

+ControlPanel()

iy

DrawPanel

~shapeList:ArrayList<Shape>
-tempShape:Shape

+isOval():boolean
+isRectangle():boolean
+isTriangle():boolean
+isFilled():boolean
+getColor():Color
+main(args:String[]):void

inner»

java.awt.Point

+DrawPanel()
\ +addShape(shape:Shape):void
#getShapeList():ArrayList<Shape>

-frame:DrawFrame

#setShapeList(shapeList:ArrayList<Shape):void
#clearShapeList():void

#removeLast():void
#paintComponent(g:Graphics):void
~createShape():Shape

MouseAdapter

MouseHandler

+mousePressed(e:MouseEvent):void

><Inner» |+mouseReleased(e:MouseEvent):void

1 |+mouseDragged(e:MouseEvent):void
-createShape():Shape

M

il

java.awt.Color [

1

oval

-diameterl:int
-diameter2:int

+Oval(pointUL:Point, diameterL:int,
diameter2:int, color:Color,
filled:boolean)

+getDiameter1():int

+getDiameter2():int

Shape __-¥

«interface»
Drawable

#location:Point[]

#color:Color
#filled:boolean
+Shape(color:Color, filled:boolean)
+getColor():Color

+draw(g:Graphics)

+isFilled():boolean
+getLocation():Point[]

Triangle

+Triangle(point1Point, pointzPoint,
point3:Point, color:Color,
filled:boolean)

Rectangle

I

~width:int
-height:int

Circle

+Rectangle(pointUL:Point, widthint,
height:int, color:Color,
filled:boolean)

+Circle(pointUL:Point, diameter:int,
color:Color, filled:boolean)
+getDiameter():int

+getWidth():int

getHeight():int
Square

+Square(pointUL:Point, width:int,
color:Color, filled:boolean)

Lab 12: Specific Instructions

All of the classes shown in the UML are provided in lab12-initial.zip.

1. Most of the classes are implemented. The key components that you must add

are:

DrawPanel

— createShape(): create the correct shape, depending on what what
points have been selected by the mouse, and which shape type, color
and fill that the user has chosen.

— paintComponent(): complete implementation
DrawFrame.FileMenuBar

— Complete the implementation of the menu
— Add code for behavior of the four menu items
DrawFrame.ControlPanel

— Define the behavior for the color button
— Define the behavior for the undo button

2. Do not add functionality to the classes beyond what has been specified

3. Don’t forget to document as you go!

Final Steps

1. Generate Javadoc using Eclipse.

Select Project/Generate Javadoc...

Make sure that your project is selected, as well as all of the Java source
files

Select Private visibility
Use the default destination folder
Click Finish

2. Open the lab12/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that that all of your classes are listed and that all of your documented
methods have the necessary documentation.

3. If you complete the above instructions during lab, you may have your imple-
mentation checked by one of the TAs.

Submission Instructions

e All required components (source code and compiled documentation) are due
at 11:59pm on Friday, November 13th.

e Prepare your submission file:

1. Select the project in the Package Explorer window.
2. Right-click. Select Export

3. Select General/Archive File

4

. Expand your project and verify that both the src and doc folders are
selected, as well as all of their contents

5. Enter the archive file name: lab12.zip (note that you may want to browse
to a different destination folder)

6. Select Save in zip format

7. Click Finish

e Submit your zip file to the lab12 folder on D2L.

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Implementation: 35 points

Program formatting: 10 points
(10) The program is properly formatted (including indentation, curly brace
and semicolon locations).
(5) There is one problem with program formatting.
(0) The program is not properly formatted.
Data types and method calls: 15 points

(15) The program is using proper data types and method calls.
(10) There is one error in data type or method call selection.
(5) There are two errors in data type or method call selection.
(0) There are multiple errors in data type and method call selection.

Required Methods: 10 points

(10) All of the required methods are implemented.
(7) A component of one required method is missing.

(4) A method is not implemented or components are missing from two
methods.

(0) Two or more required methods are not implemented or components
from three or more methods are missing.

Proper Execution: 30 points

Output: 15 points
(15) The program passes all tests.
(10) The program fails one test.
(5) The program fails two tests.
(0) The program fails three or more tests.

Execution: 15 points

(15) The program executes with no errors.
e program executes, but there is one minor error.
8) The prog fes, but there i i
e program does not execute.
0) The prog d t t

Documentation and Submission: 35 points

Project Documentation: 5 points

(5) The java file contains all of the required documentation elements at
the top of the file.
(3) The java file is missing one of the required documentation elements.

(2) The java file is missing two of the required documentation elements.

—~
(=}
~—

The java file is missing more than two of the required documentation
elements.

Method-Level Documentation: 10 points
(10) Every method contains all of the required documentation elements

ahead of the method prototype.

(7) The method documentation is missing one of the required documen-
tation elements.

(3) The method documentation is missing two of the required documen-
tation elements.

(0) The method documentation is missing more than two of the required
documentation elements.

Inline Documentation: 10 points

(10) Every method contains appropriate inline documentation.
(7
(3

(0) There are more than two missing or incorrect lines of inline documen-
tation.

There is one missing or incorrect line of inline documentation.

) There are two missing or incorrect lines of inline documentation.

Submission: 10 points

(10) The correct zip file name is used and has the correct contents.
(5) The correct zip file name is used, but one required component is
missing.
(0) An incorrect zip file name is used or more than one required compo-
nent is missing.

