
Lab Exercise 2
CS 2334

September 4, 2015

Introduction

Producing quality code requires us to take steps to ensure that our code actually
performs as we expect it to. We must write careful specifications for each method
that we implement. For a given method, this includes what the inputs are (i.e., the
parameters and their expected values), and the result that are produced (return value
and side effects). Once a method or group of methods is implemented, we must also
perform appropriate testing. Unit testing is a formal technique that requires us to
implement a set of tests that ensure that each piece of code is exercised and produces
the correct results. In practice, each time a code base is modified, this set of tests is
executed before the code is released for general use.

In this laboratory, we will use the JUnit tool to produce and evaluate a set of
tests. We have provided a specification and implementation of a couple classes. Your
task is to write a set of tests for one of these classes, and discover the bugs in our
implementation and fix them.

Learning Objectives

1. Read and understand method-level specifications

2. Read and understand previously written code

3. Create JUnit test cases

4. Use JUnit tests to discover bugs and to ultimately verify correctness of the
methods

1

5. Correct all bugs in the code base so that all tests pass successfully

Proper Academic Conduct

This lab is to be done as individuals. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

Preparation

1. Import the existing lab2 implementation into your eclipse workspace.

(a) Download the lab2 implementation:
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab2/lab2.zip

(b) In Eclipse, select File/Import

(c) Select General/Existing projects into workspace. Click Next

(d) Select Select archive file. Browse to the lab2.zip file. Click Finish

2. Carefully examine the code for the Fruit and FruitBasket classes.

3. Import JUnit into the project (depending on configuration, this may already
be done for you for this lab)

(a) Right-click on lab2 and select properties

(b) Select Java Build Path

(c) Click Libraries tab

(d) If this project is imported: you may need to select JUnit4 and click Re-
move

(e) Click Add Library

(f) Select JUnit. Click Next

(g) Select the most recent version (JUnit 4)

(h) Click Finish

(i) Click OK

2

http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab2/lab2.zip

Unit Tests

Within the lab2.zip file, we have included the FruitTest class as an example:

import org . junit . Test ;
import org . junit . Assert ;
import junit . framework . Assert ;

pub l i c c l a s s FruitTest {

/**
* Test f u l l c on s t ruc to r and the g e t t e r s
*/
@Test

pub l i c void test1 () {
// Use f u l l c on s t ruc to r
Fruit f1 = new Fruit (”Apple” , 0 . 2 , 0 . 5) ;

// The g e t t e r s must re turn the c o r r e c t va lue s
Assert . assertEquals (f1 . getPrice () , 0 . 5 , 0 .00001) ;
Assert . assertEquals (f1 . getWeight () , 0 . 2 , 0 .00001) ;
Assert . assertTrue (f1 . getName () . equals (”Apple”)) ;

}

/**
* Test name−only con s t ruc to r and the g e t t e r s
*/
@Test

pub l i c void test2 () {
// Name−only con s t ruc to r
Fruit f1 = new Fruit (”Orange”) ;

// Set p r i c e and weight p r op e r t i e s
f1 . setPrice (1 . 2) ;
f1 . setWeight (4 2 . 0) ;

// The g e t t e r s must re turn the c o r r e c t va lue s
Assert . assertEquals (f1 . getPrice () , 1 . 2 , 0 .00001) ;
Assert . assertEquals (f1 . getWeight () , 42 . 0 , 0 .00001) ;
Assert . assertTrue (f1 . getName () . equals (”Orange”)) ;

}
}

A unit test file is a class in its own right, containing one or more methods (often
named test1, test2, etc.). Each of these methods is preceded by the @test tag. This
tells the compiler to configure this method as one of the tests to be executed.

Each unit test contains three sections of code (which may be intertwined):

1. Creation of a set of objects that will be used for testing

2. Calling of the methods to be tested, often storing their results

3

3. A set of Assertions that test the results returned by the method calls. Each
assertion is a declaration by the test code of some condition that must hold if
the code is performing correctly. A typical test will have several such assertions.

In test1() in FruitTest, a fruit object is created with the name “Apple” and a
weight and price of 0.2 and 0.5, respectively. This test method confirms that each
of these three properties is set correctly during the construction of the object. For
example:

Assert . assertEquals (f1 . getPrice () , 0 . 5 , 0 .00001) ;

queries the object’s price through the price getter method and compares it to the
expected value of 0.5 (expected since this is the value that was used in the construc-
tor). Remember that it is not appropriate to simply test the equality of two doubles
(since two values can be arbitrarily close to one-another and still not be exactly
equal). Instead, this double version of assertEquals() asks whether the two values
are within 0.00001 of one another. If this is the case, then this assertion will pass.
On the other hand, if the returned price is very different than the expected value,
then the test will fail.

The assertTrue() method will test an arbitrary condition. For example:

Assert . assertTrue (f1 . getName () . equals (”Orange”)) ;

states the the name must be exactly equal to “Orange” (remember that String.equals()
requires an exact string match in order to return true). Through the use of this type
of assertion, one can check any Boolean condition.

Within Eclipse, you can execute a unit test by first selecting the java file for the
unit test and then clicking the Run button. A JUnit window pane will appear on the
left-hand-side of the interface and show you how many tests passed/failed. If a test
fails, you will be able to click on it to see exactly which line resulted in the failure.
A failure indicates a bug in the implementation of your class (or in the test itself).

When you are writing tests, you should not rely on your implementation to pro-
duce the expected values. Instead, you should work out by hand what the expected
values should be. This way, your test is independent of your implementation. Also,
it is good practice to write your tests before you write your methods.

4

FruitBasket Unit Test

Your task for this lab is to write a set of unit tests for the methods in the FruitBasket
class. Here is the procedure:

1. Create a new JUnit test class:

(a) In the package explorer, right-click on FruitBasket.java

(b) Select New/JUnit Test Case

(c) Select New JUnit 4 test

(d) The source folder should be lab2/src

(e) The name should be FruitBasketTest

(f) Class under test should be FruitBasket

(g) Click Finish. This will create and open a new class called FruitBasketTest

2. Write a set of tests that confirm that all methods of the FruitBasket class
perform correctly. Note that in these tests, you will need to create at least one
FruitBasket object and populate it with a number of Fruit objects of various
names, weights and prices. The set of tests that you write must “cover” all
of the cases in the methods in this class. This means that you must test all
possible paths through the code (e.g., every if and else branch).

3. As you execute your tests, you will discover a number of errors in the Fruit-
Basket implementation. Fix these errors and confirm that all of the bugs are
resolved using your unit tests.

Final Steps

1. Generate Javadoc using Eclipse.

� Select Project/Generate Javadoc...

� Make sure that your project is selected, as are the Driver, Fruit and Fruit-
Basket classes

� Select Private visibility

� Use the default destination folder

� Click Finish

5

2. Open the lab2/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that that both of your classes are listed and that all of your documented
methods have the necessary documentation.

3. If you complete the above instructions during lab, you may have your imple-
mentation checked by one of the TAs.

Submission instructions

� All required components (source code and compiled documentation) are due
at 11:59pm on Friday, September 4th.

� Prepare your submission file:

1. Select the project in the Package Explorer window.

2. Right-click. Select Export

3. Select General/Archive File

4. Expand your project and verify that both the src and doc folders are
selected

5. Enter the archive file name: lab2.zip (note that you may want to browse
to a different destination folder)

6. Select Save in zip format

7. Click Finish

� Submit your zip file to the lab2 folder on D2L.

References

� The API of the Assert class can be found at:
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

� JUnit tutorial in Eclipse:
https://dzone.com/articles/junit-tutorial-beginners

6

http://junit.sourceforge.net/javadoc/org/junit/Assert.html
https://dzone.com/articles/junit-tutorial-beginners

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Implementation: 45 points

Program formatting: 10 points

(10) The program is properly formatted (including indentation, curly brace
and semicolon locations).

(5) There is one problem with program formatting.

(0) The program is not properly formatted.

Unit Tests: 15 points

(15) A complete set of unit tests has been implemented.

(10) One key unit test is missing.

(5) Two key unit tests are missing.

(0) Three or more key unit tests are missing.

Bug Fixes: 20 points

(20) All of the methods with bugs have been fixed.

(15) One bug has not been fixed.

(10) Two bugs have not been fixed.

(5) Three bugs have not been fixed.

(0) Four or more bugs have not been fixed.

Proper Execution: 30 points

Output: 15 points

(15) The program passes all unit tests (these are unit tests that we pro-
vide).

(10) The program fails one test.

(5) The program fails two tests.

(0) The program fails three or more tests.

Execution: 15 points

(15) The program executes with no errors.

(8) The program executes, but there is one minor error.

(0) The program does not execute.

7

Documentation and Submission: 25 points

Project Documentation: 5 points

(5) The java file contains all of the required documentation elements at
the top of the file.

(3) The java file is missing one of the required documentation elements.

(2) The java file is missing two of the required documentation elements.

(0) The java file is missing more than two of the required documentation
elements.

Inline Documentation: 10 points

(10) Every method contains appropriate inline documentation.

(7) There is one missing or incorrect line of inline documentation.

(3) There are two missing or incorrect lines of inline documentation.

(0) There are more than two missing or incorrect lines of inline documen-
tation.

Submission: 10 points

(10) The correct zip file name is used and has the correct contents.

(5) The correct zip file name is used, but one required component is
missing.

(0) An incorrect zip file name is used or more than one required compo-
nent is missing.

8

