
Lab Exercise 3
CS 2334

September 10, 2015

Introduction

There are many reasons to import a file. Once a file is imported, it can be analyzed,
it can be presented, it can be migrated into another application, and it can be sent
to another person or computer. This is a useful skill that will be used for the rest of
your academic and professional career as a computer scientist.

In this laboratory, we will import a file, analyze it, and then display the infor-
mation to the user. We have provided a specification and partial implementation of
two classes, as well as a text file of the correct output against which you can check
your output. Your task is to complete the implementation of the classes according
to the specification.

Learning Objectives

1. Read and understand method-level specifications

2. Read and understand previously written code

3. Read data from the file

4. Complete the implementation of a class containing multiple instance variables
and methods

5. Use the information in the file to create an array of objects

6. Scan through an array of objects and display the items that match a given
criterion

1

Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

Preparation

1. Import the existing lab2 implementation into your eclipse workspace.

(a) Download the lab3 implementation:
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab3/lab3.zip

(b) In Eclipse, select File/Import

(c) Select General/Existing projects into workspace. Click Next

(d) Select Select archive file. Browse to the lab3.zip file. Click Finish

2. Carefully examine the code for the Driver and CourseEvent classes.

3. Take note of the TODO markers in the code. This is where you will be doing
your work. Note that Eclipse highlights the “TODOs” along the right hand
side of the java file editor.

2

http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab3/lab3.zip

Reading a File

Within the Driver class in the lab3.zip file, we have included the code needed to open
a file for reading:

import java . io . BufferedReader ;
import java . io . FileReader ;
import java . io . IOException ;
import java . util . ArrayList ;

pub l i c c l a s s Driver {

/**
* @param args
*/
pub l i c s t a t i c void main (String [] args) throws IOException {

BufferedReader br = new BufferedReader (new FileReader (” schedu le . csv ”)) ;

//Do s t u f f with the BufferedReader

br . close () ;

}
}

A BufferedReader can take different input streams as a parameter. In Lab 1,
an InputStreamReader was used in order to take input from System.in. In this lab,
a FileReader will be used. A FileReader takes a file name as a parameter. Notice
that the file name is a String and therefore must have quotes around it. This opens
the file and turns it into a FileReader object that can be read by the BufferedReader
object. The file schedule.csv has already been imported as part of your lab 3 project.

Automatically Generating Getters and Setters in

Eclipse

Eclipse is able to generate the getters and setters for a class for you. While editing
the class, the steps are:

� Declare all the instance variables

� Select Source on the toolbar

� Select Generate Getters and Setters... from the dropdown menu

3

From this menu, you can select the getters and setters you would like generated
from the dropdown associated with each class variable. You can also select all getters,
all setters or both. See below for specific instructions for this lab.

Lab 3

For this lab, you will be parsing a file that is used to generate our course schedule
for the class web page. This file is already imported into your lab 3 workspace, and
encodes the set of events that will happen during the semester, including lectures,
labs and due dates. The file encodes this information in a table using the comma
separated values (CSV) format. If you double click on this file from within Eclipse, it
will attempt to open the file in a spreadsheet program, such as Excel. Alternatively,
you can select the file and open with a text editor. This will bring up the raw file in
Eclipse.

Each line of this file encodes exactly one event. Each event is described using
seven distinct values that are separated by commas in the file. These are:

1. The index number of the lecture. This value counts lectures starting from the
beginning of the semester. If the event is not a lecture, then this field will have
some other value

2. The index number of the lab. Like the lecture counter, this counts the number
of labs from the beginning of the semester

3. The date of the event

4. A description of the event

5. Readings to be done in preparation of the event

6. The assignment that is being given on the day of the event

7. Any items that are due on the day of the event

Your task for this lab is to load these events from the schedule.csv file, store these
events in an Array and then scan the array for events that match certain criteria.

4

Classes

The CourseEvent class is responsible for representing a single event. This class is par-
tially implemented for you already (including a couple complete “helper” methods).
Here are the methods that need to be completed:

� CourseEvent constructor. Here you will need to take in a String that corre-
sponds to one event and parse it to populate the class variables

� isLecture() This method indicates whether a CourseEvent object is a lecture.
An event is a lecture if its lectureNumber variable is a positive value

� isLab() This method indicates whether the event is a lab. An event is a lab if
its labNumber variable is a positive value

� isDue() This method indicates whether an event includes items that are due.
You know that something is due if this String contains characters

� A full set of getters. Use Eclipse to generate these for you

The Driver class is responsible for handling the file I/O, constructing an ArrayList
of all events and generating three different reports containing events that match
certain criteria. This class is partially implemented. The main() method of this
class:

� Reads in the file

� Creates a CourseEvent object with each line of the file

� Adds those objects to the ArrayList<CourseEvent>

� Displays the CourseEvent objects that are classes

� Displays the CourseEvent objects that are labs

� Displays the CourseEvent objects that are due dates

5

Final Steps

1. Generate Javadoc using Eclipse.

� Select Project/Generate Javadoc...

� Make sure that your project is selected, as are the Driver and CourseEvent
classes

� Select Private visibility

� Use the default destination folder

� Click Finish

2. Open the lab3/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that that both of your classes are listed and that all of your documented
methods have the necessary documentation.

3. If you complete the above instructions during lab, you may have your imple-
mentation checked by one of the TAs.

Submission Instructions

� All required components (source code and compiled documentation) are due
at 11:59pm on Friday, September 11th.

� Prepare your submission file:

1. Select the project in the Package Explorer window.

2. Right-click. Select Export

3. Select General/Archive File

4. Expand your project and verify that both the src and doc folders are
selected

5. Enter the archive file name: lab3.zip (note that you may want to browse
to a different destination folder)

6. Select Save in zip format

7. Click Finish

� Submit your zip file to the lab3 folder on D2L.

6

References

� The API of the BufferedReader class can be found at:
http://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html

7

http://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Implementation: 35 points

Program formatting: 10 points

(10) The program is properly formatted (including indentation, curly brace
and semicolon locations).

(5) There is one problem with program formatting.

(0) The program is not properly formatted.

Data types and method calls: 15 points

(15) The program is using proper data types and method calls.

(10) There is one error in data type or method call selection.

(5) There are two errors in data type or method call selection.

(0) There are multiple errors in data type and method call selection.

Required Methods: 10 points

(10) All of the required methods are implemented.

(0) The required methods are not implemented.

Proper Execution: 30 points

Output: 15 points

(15) The program passes all tests.

(10) The program fails one test.

(5) The program fails two tests.

(0) The program fails three or more tests.

Execution: 15 points

(15) The program executes with no errors.

(8) The program executes, but there is one minor error.

(0) The program does not execute.

8

Documentation and Submission: 35 points

Project Documentation: 5 points

(5) The java file contains all of the required documentation elements at
the top of the file.

(3) The java file is missing one of the required documentation elements.

(2) The java file is missing two of the required documentation elements.

(0) The java file is missing more than two of the required documentation
elements.

Method-Level Documentation: 10 points

(10) Every method contains all of the required documentation elements
ahead of the method prototype.

(7) The method documentation is missing one of the required documen-
tation elements.

(3) The method documentation is missing two of the required documen-
tation elements.

(0) The method documentation is missing more than two of the required
documentation elements.

Inline Documentation: 10 points

(10) Every method contains appropriate inline documentation.

(7) There is one missing or incorrect line of inline documentation.

(3) There are two missing or incorrect lines of inline documentation.

(0) There are more than two missing or incorrect lines of inline documen-
tation.

Submission: 10 points

(10) The correct zip file name is used and has the correct contents.

(5) The correct zip file name is used, but one required component is
missing.

(0) An incorrect zip file name is used or more than one required compo-
nent is missing.

9

