Lab Exercise 5
CS 2334

September 24, 2015

Introduction

This lab focuses on the use of Exceptions to catch a variety of errors that can occur,
allowing your program to take appropriate corrective action. You will implement a
simple calculator program that allows the user to specify an operator and up to two
operands (parameters). Your program will parse these inputs, perform the operation
and print out the result. If an error occurs during any of these steps, your program
will catch the errors and provide appropriate feedback to the user.

Learning Objectives

By the end of this laboratory exercise, you should be able to:

1. Create a text menu-based application
2. Implement and throw a custom Exception

3. Robustly handle Exceptions with a try/catch block

Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

Preparation

1. Create a labb project in your Eclipse workspace.

User Interaction

Your program will begin by providing the user with the instructions:

Welcome to the Eclipse calculator!

Please select an option and give the parameters
Addition: Xy

Subtraction:
Multiplication:
Division:
Power:
Factorial:
Quit:

N O U W N
[T I B}
< <w<Y <

Your program will then wait for the user to enter a line containing the operator
number (1-7) and the appropriate number of parameters. After performing the
operation and printing the result, your program will wait for the next input.

Notes:

e The operator and parameters all occur on a single line and are separated by
space characters.

e Your program must indicate if an error has occurred in specifying the operator
or the parameters. If so, an error message is printed and your program returns
to waiting for the next line of input. Remember that Exceptions can be created
with a message String that describes in words the nature of the error.

e It is an error if an operator does not fall into the range 1-7.

e It is an error if operators 1-5 do not have exactly two parameters (these are
binary operators).

e [t is an error if operator 6 does not have one parameter (this is a unary opera-
tor).

e It is an error if operator 7 has any parameters.

e Your program will exit if operator 7 is selected.

Class Design

Below is the UML representation of the set of classes that you are to implement for
this lab (note that the Exception class is provided by the Java API).

It is important that you adhere to the instance variables and method names
provided in this diagram (we will be executing our own JUnit tests against your
code). It is also important that you maintain a clear separation between the Driver
class and the CalculatorOperations class.

The Driver class is responsible for receiving the inputs from the user, splitting
the operator from the operands, printing the results and catching and printing any
errors that might occur.

The CalculatorOperations class is responsible for parsing and interpreting the op-
erator and operands and performing the operation. It is this class that is responsible
for detecting any errors that occur.

CalculatorException

-exitFlag:boolean

+CalculatorException(String message)
+CalculatorException(String message, exitFlag:boolean) <
+getExitFlag():boolean T~~~ «catch» +main(args:String[]):void

Driver

A
|

}«throws» b’

I -

I g
CalculatorOperations

+performOperation(operation:String[]):double throws CalculatorException
. £ " T

The CalculatorFxception class is derived from FExzception, and adds an instance
variable, called exitFlag. This flag is set to true to indicate that the program should
terminate.

The line from CalculatorOperations class to CalculatorException simply indicates
that the former may throw the latter under certain conditions. Note that Calcula-
torOperations must only throw exceptions of this type (and no others).

The line from Driver to CalculatorEzception indicates that the former might have
to catch the latter.

The line from Driverto CalculatorOperations indicates that the former calls meth-
ods provided by the latter.

You must implement your own JUnit test classes called CalculatorExzceptionTest
and CalculatorOperationsTest.

Here is a general outline of a possible implementation for performOperation():

public double performOperation(String|[] operation){
// Interpret operation[0] as an int

// If there is at least one parameter, then interpret this
// parameter as a double

// If there is at least a second parameter, then interpret this
// parameter as a double

// Note the total number of parameters

// Depending on the operation type, execute the operation and
// return the result

Implementation Steps

1. Before you implement the full program, implement the Driver and the Calcu-
latorOperations classes assuming that the user is perfectly behaved and that
no exceptions will be thrown. Get this version of the program working before
you move on to the next step.

2. Implement a JUnit test for the CalculatorOperations class.
3. Implement the CalculatorFException class and a corresponding JUnit test.

4. Introduce error handling to the rest of your program. Configure the Calcula-
torOperations class to throw CalculatorException. In addition, configure your
Driver class to catch CalculatorExceptions. Note that this is the only Ex-
ception that your Driver may catch. If there are other exceptions that
occur inside of CalculatorOperations, then this class must catch and address
them (in some cases, this means turning around and throwing a CalculatorEx-
ception).

Note that it is okay for your main method to declare that it throws IO FEzxception.

Final Steps

1. Generate Javadoc using Eclipse.

Select Project/Generate Javadoc...

Make sure that your project is selected, as are the CalculatorException,
CalculatorOperations, Driver, CalculatorExceptionTest and Calculator-
OperationsTest classes (check for these individually!)

Select Private visibility
Use the default destination folder
Click Finish

2. Open the lab5/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that that all of your classes are listed and that all of your documented
methods have the necessary documentation.

3. If you complete the above instructions during lab, you may have your imple-
mentation checked by one of the TAs.

Submission Instructions

e All required components (source code and compiled documentation) are due
at 11:59pm on Friday, September 25th.

e Prepare your submission file:

1
2
3.
4

. Select the project in the Package Explorer window.
. Right-click. Select Ezport

Select General/Archive File

. Expand your project and verify that both the src and doc folders are

selected, as well as all of their contents

Enter the archive file name: labJ.zip (note that you may want to browse
to a different destination folder)

Select Save in zip format

. Click Finish

e Submit your zip file to the labb folder on D2L.

Rubric

The project will be graded out of 100 points. The distribution is as follows:
Implementation: 35 points

Program formatting: 5 points
(5) The program is properly formatted (including indentation, curly brace
and semicolon locations).
(3) There is one problem with program formatting.
(0) The program is not properly formatted.

Data types and method calls: 10 points
(15) The program is using proper data types and method calls.

(10) There is one error in data type or method call selection.
(5) There are two errors in data type or method call selection.
(0) There are multiple errors in data type and method call selection.

Required Methods: 10 points

(10) All of the required methods are implemented.
(7) A component of one required method is missing.

(4) A method is not implemented or components are missing from two
methods.

(0) Two or more required methods are not implemented or components
from three or more methods are missing.

JUnit Tests: 10 points
(10) An appropriate set of JUnit tests is implemented

(

7) One JUnit test component is missing
(4) Two JUnit test components are missing
)

(0) Three or more JUnit test components are missing

Proper Execution: 30 points

Output: 15 points

(15) The program passes all tests.
(10) The program fails one test.
(5) The program fails two tests.

(0) The program fails three or more tests.
Execution: 15 points

(15) The program executes with no errors.
(8) The program executes, but there is one minor error.
(0) The program does not execute.

Documentation and Submission: 35 points

Project Documentation: 5 points

(5) The java file contains all of the required documentation elements at
the top of the file.
(3) The java file is missing one of the required documentation elements.

(2) The java file is missing two of the required documentation elements.

—~
(=}
~—

The java file is missing more than two of the required documentation
elements.

Method-Level Documentation: 10 points
(10) Every method contains all of the required documentation elements

ahead of the method prototype.

(7) The method documentation is missing one of the required documen-
tation elements.

(3) The method documentation is missing two of the required documen-
tation elements.

(0) The method documentation is missing more than two of the required
documentation elements.

Inline Documentation: 10 points

(10) Every method contains appropriate inline documentation.
(7
(3

(0) There are more than two missing or incorrect lines of inline documen-
tation.

There is one missing or incorrect line of inline documentation.

) There are two missing or incorrect lines of inline documentation.

Submission: 10 points

(10) The correct zip file name is used and has the correct contents.
(5) The correct zip file name is used, but one required component is
missing.
(0) An incorrect zip file name is used or more than one required compo-
nent is missing.

