
Lab Exercise 9
CS 2334

October 22, 2015

Introduction

In this lab, you will begin experimenting with Graphical User Interfaces (GUIs) in
Java. GUIs are defined as a hierarchical set of graphical components (hierarchy, here,
is in a has-a sense). At the top of hierarchy is a component that is a container of other
components – in our case, this component is a JFrame. Other components, such as
JButton, JLabel, JTextField, and JRadioButton, provide the individual pieces
of the GUI with which the user interacts. JPanel objects are components that also
act as containers for multiple components, giving us a convenient, logical way of
grouping different parts of the GUI together.

Your task for the lab is to create a GUI for a simple calculator. The GUI will
give the user two text boxes in which to type operands (values) and a set of radio
buttons for selecting the type of operator. After performing the calculation, the GUI
will display the result in a text box.

Learning Objectives

By the end of this laboratory exercise, you should be able to implement a simple
GUI by:

1. Creating a window

2. Adding various graphical components to the window

3. Responding to window events in a meaningful way

1



Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

Preparation

1. Import the existing lab9 implementation into your eclipse workspace.

(a) Download the lab9 implementation:
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab9/lab9-initial.

zip

(b) In Eclipse, select File/Import

(c) Select General/Existing projects into workspace. Click Next

(d) Select Select archive file. Browse to the lab9-initial.zip file. Click Finish

2

http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab9/lab9-initial.zip
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab9/lab9-initial.zip


Simple Calculator

Below is an illustration of the graphical user interface for the calculator that we are
creating.

3



The user will enter two numbers into the two text fields. There are four operations
provided to user: add(+), subtract(-), multiplication(*) and division(/). When the
user clicks on the button ”Calculate,” based on the operation selected by the user,
the answer should be displayed at the right of ”=” sign. By default, the ”+” sign
should be selected. If the user enters an invalid number or leaves it blank, then an
error message should be displayed, just below the operand boxes. When the user
closes the window, the program should terminate.

Our calculator is organized using a set of 4 horizontal rows, as shown below:

JRadioButton JRadioButton JRadioButton JRadioButton

JTextField JLabel JTextField JLabel JLabel

JLabel

JButton

JPanel

JPanel

JPanel

JPanel

The rows, each encapsulated by a JPanel, contain the following information:

1. The operands, operator and result

2. An error message (which can be blank)

3. A Calculate button

4. A set of radio buttons for operator selection

4



Here, we have used a GridLayout of dimension 4×0 to organize the four JPanel
objects within the JFrame.

Use the following components in the design of your GUI:

� JFrame for the window

� JPanel for the sub-panels

� JButton for the button

� JTextField instances for providing editable input text boxes

� JLabel instances for displaying the result and the error message

� ButtonGroup to tell the Java windowing system that only one operator but-
ton can be selected at any one time

� JRadioButton instances for the radio buttons

Lab 9: Specific Instructions

There is only one class file, CalculatorFrame.java, that is provided in lab9-initial.zip.

1. Modify the class according to the instructions given in the comments

� Be sure that the class name is exactly as given in the initial zip file

� You must use the default package, meaning that the package field must
be left blank

2. Implement the methods for the CalculatorFrame class

� Do not change the name for instance variables and method name if pro-
vided in initial zip file

� Do not add functionality to the classes beyond what has been specified

� Don’t forget to document as you go!

5



Hints

� Remember that your class is-a JFrame. This means that it will provide all of
the methods that are made available by JFrame. Make sure to call super() in
your constructor.

� Your constructor should create all of the GUI components, hook them together,
and attach the appropriate ActionListeners

� Your main function must create a single instance of CalculatorFrame and
then do nothing else

� References to the different GUI components should be included in your instance
variables

� All of your inner, anonymous classes can “see” the instance variables

� See the JRadioButton API documentation for information about how to ask
the radio button about whether it has been selected

� See the JLabel API documentation for information about how to change the
text contained within the label

Final Steps

1. Generate Javadoc using Eclipse.

� Select Project/Generate Javadoc...

� Make sure that your project is selected, as is the CalculatorFrame

� Select Private visibility

� Use the default destination folder

� Click Finish

2. Open the lab9/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that that all of your classes are listed and that all of your documented
methods have the necessary documentation.

3. If you complete the above instructions during lab, you may have your imple-
mentation checked by one of the TAs.

6



Submission Instructions

� All required components (source code and compiled documentation) are due
at 11:59pm on Friday, October 23rd.

� Prepare your submission file:

1. Select the project in the Package Explorer window.

2. Right-click. Select Export

3. Select General/Archive File

4. Expand your project and verify that both the src and doc folders are
selected, as well as all of their contents

5. Enter the archive file name: lab9.zip (note that you may want to browse
to a different destination folder)

6. Select Save in zip format

7. Click Finish

� Submit your zip file to the lab6 folder on D2L.

7



Rubric

The project will be graded out of 100 points. The distribution is as follows:

Implementation: 35 points

Program formatting: 10 points

(10) The program is properly formatted (including indentation, curly brace
and semicolon locations).

(5) There is one problem with program formatting.

(0) The program is not properly formatted.

Data types and method calls: 15 points

(15) The program is using proper data types and method calls.

(10) There is one error in data type or method call selection.

(5) There are two errors in data type or method call selection.

(0) There are multiple errors in data type and method call selection.

Required Methods: 10 points

(10) All of the required methods are implemented.

(7) A component of one required method is missing.

(4) A method is not implemented or components are missing from two
methods.

(0) Two or more required methods are not implemented or components
from three or more methods are missing.

Proper Execution: 30 points

Output: 15 points

(15) The program passes all tests.

(10) The program fails one test.

(5) The program fails two tests.

(0) The program fails three or more tests.

Execution: 15 points

(15) The program executes with no errors.

(8) The program executes, but there is one minor error.

(0) The program does not execute.

8



Documentation and Submission: 35 points

Project Documentation: 5 points

(5) The java file contains all of the required documentation elements at
the top of the file.

(3) The java file is missing one of the required documentation elements.

(2) The java file is missing two of the required documentation elements.

(0) The java file is missing more than two of the required documentation
elements.

Method-Level Documentation: 10 points

(10) Every method contains all of the required documentation elements
ahead of the method prototype.

(7) The method documentation is missing one of the required documen-
tation elements.

(3) The method documentation is missing two of the required documen-
tation elements.

(0) The method documentation is missing more than two of the required
documentation elements.

Inline Documentation: 10 points

(10) Every method contains appropriate inline documentation.

(7) There is one missing or incorrect line of inline documentation.

(3) There are two missing or incorrect lines of inline documentation.

(0) There are more than two missing or incorrect lines of inline documen-
tation.

Submission: 10 points

(10) The correct zip file name is used and has the correct contents.

(5) The correct zip file name is used, but one required component is
missing.

(0) An incorrect zip file name is used or more than one required compo-
nent is missing.

9


