
CS 2334
Project 3: Java Collections Framework

October 19, 2015

Due: 1:29 pm on Monday, Nov 2, 2015

Introduction

For the last two projects, you have been using data that are well-structured. In par-
ticular, you could assume ahead of time that you knew which stations were included
in the data set and, for each station, you could assume that you knew which data
elements were being recorded. In this project, we will break both of these assump-
tions. At run time, your program will load a pair of configuration files that will
inform it of 1) the set of stations that are included in the data set, and 2) the set of
measurements that are made at each station. Given this information, your program
will create the data structures necessary to load in the data for the set of stations
and to compute statistics over the individual measurements.

Your final product will:

1. Load in files that describe the set of measures taken (the variables) at the
stations, the set of stations, and the data.

2. Query the user for a Mesonet station (single station only).

3. Query the user for a statistic name (single statistic only).

4. Report the minimum, maximum and average of that statistic over all data for
that station.

1

Learning Objectives

By the end of this project, you should be able to:

1. Make an interactive menu for a user and handle errors in input

2. Make use of HashMaps and TreeMaps to flexibly store data in a structure
that is efficient to access

3. Compute statistics over the stored data in a manner that does not rely on a
priori knowledge of the specifics of the data

4. Continue to exercise good coding practices for Javadoc and for unit testing

Proper Academic Conduct

This project is to be done in the groups of two that we have assigned. You are to
work together to design the data structures and solution, and to implement and test
this design. You will turn in a single copy of your solution. Do not look at or discuss
solutions with anyone other than the instructor, TAs or your assigned team. Do not
copy or look at specific solutions from the net.

Refactoring

We are refactoring our project 2 code to implement this new project. The large
changes to the problem include:

� All of the data are contained within a single file. The data loading process
will be managed by the StationList class. The DataSet and YearlyData
classes will provide an add() method that will add a new day to a DataSet or
YearlyData object.

� Your code will not know a priori which variables are being measured by the
stations. This information will be provided in a file that will describe the
variableId, variable name, units and a textual description.

� Your code will not know a priori the list of stations that will be in the data file.
This information will be provided in a station configuration file that includes
the stationId, station name and city.

2

� We will not make substantial use of the ArrayList class. Instead, we will rely
on the HashMap and TreeMap classes. This will allow us to be very flexible
in the data that we store and efficient in our access of that data.

� The minimum, maximum and average statistics will not be computed as the
data are loaded. Instead, these will be computed based on specific user queries.

Strategies for Success

� The UML specification constitutes the interface that we will rely on during our
testing. Do not make changes to this interface.

� When you are implementing a class or a method, focus on just what that
class/method should be doing. Try your best to put the larger problem out of
your mind.

� We encourage you to work closely with your other team member, meeting in
person when possible.

� Start this project early. In most cases, it cannot be completed in a day or two.

� Implement and test your project components incrementally. Don’t wait until
your entire implementation is done to start the testing process.

� Write your documentation as you go. Don’t wait until the end of the imple-
mentation process to add documentation. It is often a good strategy to write
your documentation before you begin your implementation.

Preparation

Import the existing project3 implementation into your eclipse workspace:
http://www.cs.ou.edu/~fagg/classes/cs2334/projects/project2/project3-initial.

zip

Example Interactions

Below are several examples of our implementation of UserQuery class interacting
with a user. Your implementation should behave in the same way. Keep in mind
that we will be testing many other cases when we evaluate your code.

3

http://www.cs.ou.edu/~fagg/classes/cs2334/projects/project2/project3-initial.zip
http://www.cs.ou.edu/~fagg/classes/cs2334/projects/project2/project3-initial.zip

##
Station ID Name City

−−−−−−−−−− −−−− −−−−
ACME Acme Rush Springs

ADAX Ada Ada

ALTU Altus Altus

ALV2 Alva Alva

ALVA Alva Alva

ANT2 Antlers Antlers

ANTL Antlers Antlers

APAC Apache Apache

ARD2 Ardmore Ardmore

ARDM Ardmore Ardmore

ARNE Arnett Arnett

BBOW Broken Bow Broken Bow

BEAV Beaver Beaver

BEEX Bee Tishomingo

BESS Bessie Bessie

BIXB Bixby Bixby

BLAC Blackwell Blackwell

BOIS Boise City Boise City

BOWL Bowlegs Bowlegs

BREC Breckinridge Breckinridge

BRIS Bristow Bristow

BROK Broken Bow Broken Bow

BUFF Buffalo Buffalo

BURB Burbank Burbank

BURN Burneyville Burneyville

BUTL Butler Butler

BYAR Byars Byars

CALV Calvin Calvin

CAMA Camargo Camargo

CARL Lake Carl Blackwell Orlando

CATO Catoosa Catoosa

CENT Centrahoma Centrahoma

CHAN Chandler Sparks

CHER Cherokee Cherokee

CHEY Cheyenne Cheyenne

CHIC Chickasha Chickasha

CLAR Claremore Claremore

CLAY Clayton Clayton

CLOU Cloudy Cloudy

CLRM Claremore Claremore

COOK Cookson Marble City

COPA Copan Copan

DURA Durant Durant

ELRE El Reno El Reno

ERIC Erick Erick

EUFA Eufaula Eufaula

FAIR Fairview Fairview

FITT Fittstown Fittstown

FORA Foraker Foraker

FREE Freedom Freedom

FTCB Fort Cobb Fort Cobb

GOOD Goodwell Goodwell

GRA2 Grandfield Grandfield

GRAN Grandfield Grandfield

4

GUTH Guthrie Guthrie

HASK Haskell Haskell

HECT Hectorville Hectorville

HINT Hinton Hinton

HOBA Hobart Hobart

HOLD Holdenville Holdenville

HOLL Hollis Gould

HOOK Hooker Hooker

HUGO Hugo Hugo

IDAB Idabel Idabel

INOL Inola Inola

JAYX Jay Jay

KENT Kenton Kenton

KETC Ketchum Ranch Velma

KIN2 Kingfisher Kingfisher

KING Kingfisher Kingfisher

LAHO Lahoma Lahoma

LANE Lane Lane

MADI Madill Lebanon

MANG Mangum Mangum

MARE Marena Coyle

MARS Marshall Marshall

MAYR May Ranch Freedom

MCAL McAlester McAlester

MEDF Medford Medford

MEDI Medicine Park Medicine Park

MIAM Miami Miami

MINC Minco Minco

MRSH Marshall Marshall

MTHE Mt Herman Smithville

NEWK Newkirk Newkirk

NEWP Newport Ardmore

NINN Ninnekah Ninnekah

NORM Norman Norman

NOWA Nowata Delaware

NRMN Norman Norman

OILT Oilton Oilton

OKCE Oklahoma City East Oklahoma City

OKCN Oklahoma City North Oklahoma City

OKCW Oklahoma City West Oklahoma City

OKEM Okemah Okemah

OKMU Okmulgee Morris

PAUL Pauls Valley Pauls Valley

PAWN Pawnee Pawnee

PERK Perkins Perkins

PORT Porter Clarksville

PRES Preston Preston

PRYO Pryor Adair

PUTN Putnam Putnam

REDR Red Rock Red Rock

RETR Retrop Willow

RING Ringling Ringling

SALL Sallisaw Sallisaw

SEIL Seiling Seiling

SHAW Shawnee Shawnee

SKIA Skiatook Skiatook

SLAP Slapout Slapout

SPEN Spencer Spencer

5

STIG Stigler Stigler

STIL Stillwater Stillwater

STUA Stuart Stuart

SULP Sulphur Sulphur

TAHL Tahlequah Tahlequah

TALA Talala Talala

TALI Talihina Talihina

TIPT Tipton Tipton

TISH Tishomingo Tishomingo

TULL Tullahassee Tullahassee

TULN Tulsa Tulsa

VANO Vanoss Vanoss

VINI Vinita Centralia

WAL2 Walters Walters

WALT Walters Walters

WASH Washington Washington

WATO Watonga Watonga

WAUR Waurika Waurika

WEAT Weatherford Weatherford

WEBB Webbers Falls Webbers Falls

WEBR Webbers Falls Webbers Falls

WEST Westville Westville

WILB Wilburton Wilburton

WIST Wister Wister

WOOD Woodward Woodward

WYNO Wynona Wynona

Please choose a station (or ”END” to quit) :
SHAW

Variable ID Name Units

−−−−−−−−−−− −−−− −−−−−
2AVG Average Wind Speed at 2m miles per hour

2DEV Standard Deviation of Wind Speed at 2m miles per hour

2MAX Maximum 2m Wind Speed miles per hour

2MIN Minimum 2m Wind Speed miles per hour

9AVG Average Air Temperature at 9m degrees ←↩
Fahrenheit

AMAX Maximum Solar Radiation Watts per square←↩
meter

ATOT Total Solar Radiation mega Joules per ←↩
square meter

BAVG Average Temperature Under Bare Soil at 10cm degrees ←↩
Fahrenheit

BMAX Maximum Temperature Bare Soil at 10cm degrees ←↩
Fahrenheit

BMIN Minimum Temperature Under Native Vegetation at 10cm degrees ←↩
Fahrenheit

CDEG Cooling Degree Days degrees ←↩
Fahrenheit

DAVG Average Dewpoint Temperature degrees ←↩
Fahrenheit

DMAX Maximum Dewpoint Temperature degrees ←↩
Fahrenheit

DMIN Minimum Dewpoint Temperature degrees ←↩
Fahrenheit

HAVG Average Humidity percent

HDEG Heating Degree Days degrees ←↩
Fahrenheit

HMAX Maximum Humidity percent

6

HMIN Minimum Humidity percent

HTMX Maximum Heat Index Temperature degrees ←↩
Fahrenheit

MSLP Mean Sea Level Pressure inches of ←↩
mercury

PAVG Average Station Pressure inches of ←↩
mercury

PMAX Maximum Station Pressure inches of ←↩
mercury

PMIN Minimum Station Pressure inches of ←↩
mercury

RAIN Rain inches

SAVG Average Temperature Under Native Vegetation at 10cm degrees ←↩
Fahrenheit

SMAX Maximum Temperature Under Native Vegetation at 10cm degrees ←↩
Fahrenheit

SMIN Minimum Temperature Under Native Vegetation at 10cm degrees ←↩
Fahrenheit

TAVG Average Air Temperature degrees ←↩
Fahrenheit

TMAX Maximum Daily Air Temperature degrees ←↩
Fahrenheit

TMIN Minimum Daily Air Temperature degrees ←↩
Fahrenheit

VDEF Average Daily Vapor Deficit millibars

WCMN Minimum Wind Chill Index Temperature degrees ←↩
Fahrenheit

WDEV Standard Deviation of Wind Speed at 10m miles per hour

WMAX Maximum Wind Gust miles per hour

WSMN Minimum Wind Speed miles per hour

WSMX Maximum Wind Speed miles per hour

WSPD Average Wind Speed miles per hour

Please choose a variable (or ”END” to quit) :
DAVG

Station : SHAW , Shawnee , Shawnee

Variable : DAVG , Average Dewpoint Temperature (degrees Fahrenheit)
Average : 49.87511010823314 degrees Fahrenheit

Maximum : 75 .85 degrees Fahrenheit on 6/27/1999 at SHAW

Minimum : 0 .65 degrees Fahrenheit on 1/3/1999 at SHAW

Hit <ENTER> to cont inue
Done . .

Note: several of the above lines have been wrapped to the next line.
The arrows are not part of the program output.

7

##
Station ID Name City

−−−−−−−−−− −−−− −−−−
ACME Acme Rush Springs

:
:
WYNO Wynona Wynona

Please choose a station (or ”END” to quit) :
TULS

Please choose a station (or ”END” to quit) :
TULN

Variable ID Name Units

−−−−−−−−−−− −−−− −−−−−
2AVG Average Wind Speed at 2m miles per hour

:
:
WSPD Average Wind Speed miles per hour

Please choose a variable (or ”END” to quit) :
WMAX

Station : TULN , Tulsa , Tulsa

Variable : WMAX , Maximum Wind Gust (miles per hour)
Average : invalid

Maximum : invalid

Minimum : invalid

Hit <ENTER> to cont inue
Done . .

##
Station ID Name City

−−−−−−−−−− −−−− −−−−
ACME Acme Rush Springs

:
:
WYNO Wynona Wynona

Please choose a station (or ”END” to quit) :
tala

Variable ID Name Units

−−−−−−−−−−− −−−− −−−−−
2AVG Average Wind Speed at 2m miles per hour

:
:
WSPD Average Wind Speed miles per hour

Please choose a variable (or ”END” to quit) :
htmx

Station : TALA , Talala , Talala

Variable : HTMX , Maximum Heat Index Temperature (degrees Fahrenheit)
Average : invalid

There are no valid measurements .
Hit <ENTER> to cont inue
Done . .

8

##
Station ID Name City

−−−−−−−−−− −−−− −−−−
ACME Acme Rush Springs

ADAX Ada Ada

:
:
WYNO Wynona Wynona

Please choose a station (or ”END” to quit) :
foo

Please choose a station (or ”END” to quit) :
56
Please choose a station (or ”END” to quit) :

Please choose a station (or ”END” to quit) :
Sulp

Variable ID Name Units

−−−−−−−−−−− −−−− −−−−−
2AVG Average Wind Speed at 2m miles per hour

:
:
WSPD Average Wind Speed miles per hour

Please choose a variable (or ”END” to quit) :
bar

Please choose a variable (or ”END” to quit) :
baz

Please choose a variable (or ”END” to quit) :
45 34 jafd

Please choose a variable (or ”END” to quit) :

Please choose a variable (or ”END” to quit) :
BAvG

Station : SULP , Sulphur , Sulphur

Variable : BAVG , Average Temperature Under Bare Soil at 10cm (degrees Fahrenheit)
Average : 66.41428053442884 degrees Fahrenheit

Maximum : 96 .42 degrees Fahrenheit on 7/13/1995 at SULP

Minimum : 32 .89 degrees Fahrenheit on 1/8/1996 at SULP

Hit <ENTER> to cont inue
Done . .

9

Class Design Outline

Because your program will not know at compile time what the set of variables will
be, we must fundamentally change the way that we are representing that data.
Specifically, variables will be identified using a String variableId. These IDs will then
be used to look-up the assoicated Observation value, as well compute the minimum,
maximum and average of a variable. Likewise, your program will not know ahead of
time what the set of stations will be. This set will be loaded at run time.

� The DataInfo class will represent the information about a single variable,
including its ID, a text description and the variables’s units.

� The DataInfoList class will represent all of the possible variables that are
stored for a single station. The constructor will load a configuration file (Data-
Translation.csv); each line of this file encodes a single variable.

� The StationInfo class will represent the information about a station, including
its ID, name and location, as well as a text description of the station and dates
that the station started and stopped recording data.

� The StationInfoList class will represent the information about all of the sta-
tions. The constructor will load a configuration file (geoinfo.csv); each line of
this file encodes one station.

� Many classes implement an add(DailyData day) method. In all cases, this is
about adding a new day to the data structure. In each class, the method must
decide how to handle this day. For the case of a YearlyData object, it must
decide which month to add the day to and then add the day to that month.

� Many classes implement a getAverageStat(String stationId) method that re-
turns an Observation. The MultiStatisticsAbstract class performs this
computation across all of the contents of this object (e.g., over all of the months
contained within this year). For other classes, implementation of this method
is a matter of looking up the correct value (in the case of a DailyData object)
or of asking a sub-object what the average statistic is.

� getMinimumStat() and getMaximumStat() are the same as above.

� The MultiStatisticAbstract child classes all represent their sub-objects us-
ing a TreeMap. Keys for the TreeMap are Integers (e.g., corresponding to
the year in the case of a DataSet object). We use TreeMap because we

10

want to preserve the order of the keys when we perform searches for the mini-
mum and maximum values of a variable. The implementation required by the
Comparable<T> interface determines the ordering of these keys.

� The DailyData class will no longer explicitly represent variables for every pos-
sible Observation. Instead, this class will use a HashMap to map a variableId
to an instance of an Observation for that variable.

� Likewise, any class that extends the MultiStatisticsAbstract class will not
explicitly represent specific variables. Instead, the variableId will be used to
query value of the variable and to compute the minimum, maximum and aver-
age of the variable.

� DataSet will contain all of the years associated with a specific station.

11

Below is a complete UML diagram for our key classes.
Notes:

� If an abstract method is defined in an abstract class or an interface, and it is
not listed elsewhere in the diagram, then the method must be implemented by
the concrete class.

DataInfoList

-dataInfos:ArrayList<DataInfo>
-dataInfoMap:HashMap<String, DataInfo>

+DataInfoList(f i leName:String) throws FileNotFoundException, IOException
+getVariableIds() :ArrayList<Str ing>
+isValidStat(variableId:String):boolean
+getDataInfo(variableId:String):DataInfo
+toStr ing() :Str ing

DataInfo

-variableName:String
-variableId:String
-unit :Str ing
-positive:boolean
-description:String

+DataInfo(vaariableName:String, variableId:String,
 unit:String, positive:boolean, description:String)
+getFormattedStr ing():Str ing
+isPositive():boolean
+toStr ing() :Str ing
+ALL GETTERS

StationInfoList

stat ions:ArrayList<Stat ionInfo>
stat ionMap:HashMap<Str ing, Stat ionInfo>

+StationInfoList(f i leName:String) throws FileNotFoundException, IOException
-str2Cal(strg:String):GregorianCalendar
#add(DailyData):void
+loadData(fi leName:String) throws FileNotFoundException, IOException
+getStationInfo(stationId:String):StationInfo
+getStat ionIds() :ArrayList<Str ing>
+getAverageStat(stationId:String, variableId:String):Observation
+getMaximumStat(stationId:String, variableId:String):DailyData
+getMinimumStat(stationId:String, variableId:String):DailyData
+toStr ing() :Str ing

StationInfo

-stationId:String
-name:String
-city:Str ing
-nlat:double
-elon:double
-datc:GregorianCalendar
-datd:GregorianCalendar
-dataSet:DataSet

+StationInfo(stationId:String, name:String, city:String,
 nlat:double, elon:double, datc:GregorianCalendar,
 datd:GregorianCalendar)
#add(day:DailyData):void
+formatDate(date:GregorianCalendar):String
+getMinimumStat(variableId:Str ing):DailyData
+getMaximumStat(variableId:String):DailyData
+getAverageStat(variableId:String):Observation
+toStr ing() :Str ing
+getFormattedStr ing():Str ing
+OTHER GETTERS

DataSet

-years:TreeMap<Integer,YearlyData>

+DataSet()

Comparable<YearlyData>
Comparable<MonthlyData>

Comparable<Dai lyData>

Observation

-value:double
-valid:boolean

+Observation()
+Observation(value:double)
+getValue():double
+getValid():boolean
+isLessThan(o:Observation):boolean
+isGreaterThan(o:Observation):boolean
+toStr ing() :Str ing

Exception

UserQueryException

+UserQueryException(message:String)

UserQuery

+selectString(br:BufferedReader, prompt:String,
 strings:ArrayList<String>):String throws UserQueryException
+stationMenu(br:BufferedReader, stationList:StationInfoList):String
 throws IOException, UserQueryException
+variableMenu(br:BufferedReader, dataInfoList:DataInfoList):String
 throws IOException, UserQueryException
+main(args:String[]):void throws IOException

YearlyData

-months:TreeMap<Integer,MonthlyData>
-year:int
+MONTHS_PER_YEAR:int

+YearlyData()

MonthlyData

-days:TreeMap<Integer,DailyData>
-month: int

+MonthlyData()

Mult iStatist icsAbstract

#getContents():TreeMap<Integer, ? extends StatisticsAbstract>
#add(day:DailyData):void
+getMinimumStat(variableId:Str ing):DailyData
+getMaximumStat(variableId:String):DailyData
+getAverageStat(variableId:String):Observation

DailyData

-year:int
-month: int
-day:int
-stationId:String
-observationMap:HashMap<String, Observation>
-dataInfoList:DataInfoList
-dataFields:ArrayList<Str ing>

+DailyData(elements:String[])
+getDate():Str ing
#setDataInfoList(dataInfoList:DataInfoList):void
#setDataFields(dataFieldList:String[]):void
+toStr ing() :Str ing
+OTHER GETTERS

StatisticsAbstract

+getMinimumStat(variableId:Str ing):DailyData
+getMaximumStat(variableId:String):DailyData
+getAverageStat(variableId:String):Observation

1

1

*

*

1

*

1 2

*

* *

*

*

12

Project Components

We provide an initial implementation for most classes. Please start from these im-
plementations. Where it is useful, it is fine to copy implementations from project
2.

1. Implement your DataInfo and DataInfoList classes. Use the DataTransla-
tion.csv file as a guide to how these should be implemented.

2. Implement the DataInfoListTest class.

3. Implement your StationInfo and StationList classes. Use the geoinfo.csv file
as a guide to how these should be implemented.

4. Implement the StationListTest class.

5. Copy your working Observation class (assuming that it is correctly imple-
mented).

6. Keep, and possibly update, the unit tests for the Observation class within
the ObservationTest class.

7. Update your StatisticsAbstract class according to the UML.

8. Update your DailyData implementation to match the requirements of the
UML.

9. Update your DailyDataTest class to test the new implementation of the class.

10. Update the MultiStatisticsAbstract to match the UML specification.

11. Modify your classes called MonthlyData, YearlyData and DataSet classes.

12. Create a unit test that loads the variable list, station list and data, then care-
fully tests the minimum, maximum and average statistics computations for
multiple stations and variables.

13. Copy your UserQueryException class from project 2.

14. Update your UserQuery class that contains your main method. This method
must:

� Load the variable list, station list and data.

13

� Query the user for the desired station

� Query the user for the desired variable

� Report the average, maximum and minimum statistics for that station’s
variable

� Repeat the queries until the user enters “END”

Assumptions

You may make the following simplifying assumptions:

1. All stations in the data set will be included in the geoinfo.csv file. The columns
in this file are pre-defined (i.e., they won’t change).

2. All files exist and are properly-formatted csv files.

3. The data file will include the following columns: YEAR, MONTH, DAY, STID.

4. All variable values in the data set file can be interpreted as doubles.

Notes

1. The first line of the data file determines the names of each of the fields in
this file (each column is a field). While most of these columns are variables
that are measured by the stations, not all are. In your DailyData objects, you
should only include fields that correspond to variables (as determined by the
isValidStat() method.

2. getMinimumStat() and getMaximumStat() may return null if no DailyData
objects are associated with the station.

14

Final Steps

1. Generate Javadoc using Eclipse for all of your classes.

2. Open the project3/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to
make sure that all of your classes are listed (five primary classes plus four JU-
nit test classes) and that all of your documented methods have the necessary
documentation.

Submission Instructions

� All required components (source code and compiled documentation) are due
at 1:29 pm on Monday, November, 2nd (i.e, before class begins).

� Prepare your submission file by creating a project3.zip file. This file must
include your entire project, including: src, and doc

� Submit your zip file to the project3 folder on D2L.

Grading: Code Review

All groups must attend a code review session in order to receive a grade for your
project. The procedure is as follows:

� Submit your project for grading to the D2L Dropbox, as described above.

� Any day following the submission, you may do the code review with the in-
structor or the TAs. For this, you have two options:

1. Schedule a 15-minute time slot in which to do the code review. We will use
Doodle to schedule these (a link will be posted on D2L). You must attend
the code review during your scheduled time. Failure to do so will leave
you only with option 2 (no rescheduling of code reviews is permitted).

2. “Walk-in” during an unscheduled office hour time. However, priority will
be given to those needing assistance in the labs and project.

� Both group members must be present for the code review.

15

� During the code review, we will discuss all aspects of the rubric, including:

1. The results of the tests that we have executed against your code.

2. The documentation that has been provided (all three levels of documen-
tation will be examined).

3. The implementation. Note that both group members must be able to
answer questions about the entire solution that the group has produced.

� If you complete your code review before the submission deadline, you have the
option of going back to make changes and resubmitting (by the deadline). If
you do this, you will need to return for another code review.

� The code review must be completed by Monday, November 16th to receive
credit for the project.

References

� The Java API: https://docs.oracle.com/javase/8/docs/api/

� The Oklahoma Mesonet: http://www.mesonet.org

� The API of the Assert class can be found at:
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

� JUnit tutorial in Eclipse:
https://dzone.com/articles/junit-tutorial-beginners

16

https://docs.oracle.com/javase/8/docs/api/
http://www.mesonet.org
http://junit.sourceforge.net/javadoc/org/junit/Assert.html
https://dzone.com/articles/junit-tutorial-beginners

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Implementation: 45 points

Program formatting: 10 points

(10) The program is properly formatted (including indentation, curly brace
and semicolon locations).

(5) There is one problem with program formatting.

(0) The program is not properly formatted.

Data types and method calls: 10 points

(10) The program is using proper data types and method calls.

(7) There is one error in data type or method call selection.

(4) There are two errors in data type or method call selection.

(0) There are three or more errors in data type and method call selection.

Required Methods: 15 points

(15) All of the required methods are implemented.

(10) One required method is not implemented

(5) Two required methods are not implemented.

(0) Two or more required methods are not implemented.

Unit Tests: 10 points

(10) A complete set of unit tests has been implemented.

(7) One key unit test is missing.

(4) Two key unit tests are missing.

(0) Three or more key unit tests are missing.

17

Proper Execution: 30 points

Output: 15 points

Two (2) points will be deducted for every test that your program fails.
(note that these are tests that we provide).

Execution: 15 points

(15) The program executes with no errors.

(8) The program executes, but there is one minor error.

(0) The program does not execute.

Documentation and Submission: 25 points

Project Documentation: 4 points

(4) The java file contains all of the required documentation elements at
the top of the file.

(3) The java file is missing one of the required documentation elements.

(2) The java file is missing two of the required documentation elements.

(0) The java file is missing more than two of the required documentation
elements.

Method-Level Documentation: 9 points

(9) Every method contains all of the required documentation elements
ahead of the method prototype.

(6) The method documentation is missing one of the required documen-
tation elements.

(3) The method documentation is missing two of the required documen-
tation elements.

(0) The method documentation is missing more than two of the required
documentation elements.

Inline Documentation: 9 points

(9) Every method contains appropriate inline documentation.

(6) There is one missing or incorrect line of inline documentation.

(3) There are two missing or incorrect lines of inline documentation.

(0) There are more than two missing or incorrect lines of inline documen-
tation.

18

Submission: 3 points

(3) The correct zip file name is used and has the correct contents.

(2) The correct zip file name is used, but one required component is
missing.

(0) An incorrect zip file name is used or more than one required compo-
nent is missing.

19

