
CS 2334
Project 4: Graphical User Interfaces

November 2, 2015

Due: 1:29 pm on Wednesday, Nov 18, 2015

Introduction

For the last three projects, you have been focused on reading data from files and
constructing large, efficient representations from the data. For this project, we will
focus on presenting these data to a user, enabling the user to explore the statistics
associated with specific stations, variables and years.

Your implementation from project 3 will continue to serve as the basis for data
loading and representation (with minimal changes). What you will add is a graphical
user interface that interacts with the user.

Your final product will:

1. Load in files that describe the set of measures taken (the variables) at the
stations, and the set of stations.

2. Allow the user to specify a data file to load.

3. Allow the user to select a station, a variable of interest and a set of years of
interest.

4. Report the minimum, maximum and average of the selected statistic over the
range of years that has been specified.

1

Learning Objectives

By the end of this project, you should be able to:

1. Create a menu that is attached to a frame.

2. Make use of JLists that present a set of options to a user and allow the user to
select one or more of these options

3. Create a set of components that display textual data to a user

4. Create the listeners necessary to allow the GUI to respond to user input

5. Continue to exercise good coding practices for Javadoc and for testing

Note that this project relies heavily on your reading of the Java API documen-
tation, and even examples. We have tried to provide you with a good set of hints,
but, fundamentally, you have to pull the details out of the documentation.

Proper Academic Conduct

This project is to be done in the groups of two that we have assigned. You are to
work together to design the data structures and solution, and to implement and test
this design. You will turn in a single copy of your solution. Do not look at or discuss
solutions with anyone other than the instructor, TAs or your assigned team. Do not
copy or look at specific solutions from the net.

Strategies for Success

� The UML is a guide to the new classes and methods that you will implement.

� When you are implementing a class or a method, focus on just what that
class/method should be doing. Try your best to put the larger problem out of
your mind.

� We encourage you to work closely with your other team member, meeting in
person when possible.

� Start this project early. In most cases, it cannot be completed in a day or two.

2

� Implement and test your project components incrementally. Don’t wait until
your entire implementation is done to start the testing process.

� Write your documentation as you go. Don’t wait until the end of the imple-
mentation process to add documentation. It is often a good strategy to write
your documentation before you begin your implementation.

Preparation

� We will be providing parts of our project 3 implementation. However, this will
only become available after the final deadline for project 3.

� Create a project4 project. Within this project, create a data directory (folder).
Copy the data that we provided in project 3 to this data directory.

Example Interactions

Below is a set of screen-shots for our implementation. Your implementation may
have a different look. However, it must have the essential functionality, as described
in the next section.

When your program starts up, it will immediately load the station and variable
configuration files, but will not load a data file. Given the loaded information, here
is the initial state of the interface:

3

� A file menu is presented in the upper-left corner of the window.

� The green area contains three list interfaces that allows the user to select a
stationId, a variable and one or more years. Only one station and variable
may be selected at any one time. However, any combination of years can be
selected.

� The dark gray area displays the selected station (ID, Name and City), the
selected variable (ID, Units and Description), and the maximum, average and
minimum for the selected station, variable and years. For the minimum and
maximum values, the dates of the minimum and maximum are also shown.

4

When the file menu is selected, the full menu opens:

If Exit is selected, then the program exits (by calling System.exit(0)).
If Open Data File is selected, then a file chooser is opened:

5

� If any of the allData files are selected, then your program will begin to load the
data. While the data are loading, the cursor changes to an animated clock to
indicate that your program is busy. This can be accomplished by setting the
Frame’s cursor to: Cursor.getPredefinedCursor(Cursor.WAIT CURSOR).

� If a file is specified that does not exist, your program should open an error win-
dow. This can be accomplished using JOptionPane.showMessageDialog()

� If an Exception is thrown while loading the file, then your program should also
open an error window.

Here is one example of an error window:

6

After loading, your program will display statistics about the selected station and
variable for all years:

Another example:

7

Specific years can be selected:

8

A few other examples:

9

10

UML Design

Below is an outline of what has changed from project 3:

JFileChooser

JMenuBar

JPanel

JFrame

Driver

+main(args:String[]):void

DataPanel

-stationLabel:JLabel
-variableLabel:JLabel
-minLabel:JLabel
-maxLabel:JLabel
-averageLabel:JLabel
		
-stationIdField:JTextField
-stationNameField:JTextField
-stationCityField:JTextField
-variableIdField:JTextField
-minVal:JTextField
-maxVal:JTextField
-averageVal:JTextField
-variableUnitsField:JTextField
-minDateField:JTextField
-maxDateField:JTextField
-variableDescription:JTextArea

+DataPanel()
+updateData():void

FileMenuBar

-menu:JMenu
-menuOpen:JMenuItem
-menuExit:JMenuItem
-fileChooser:JFileChooser

+FileMenuBar()

SelectionPanel

-stationList:JList<String>
-variableList:JList<String>
-yearList:JList<String>
-yearListModel:DefaultListModel<String>
-yearListValues:ArrayList<Integer>

-stationListScroller:JScrollPane
-variableListScroller:JScrollPane
-yearListScroller:JScrollPane

-stationLabel:JLabel
-variableLabel:JLabel
-yearListLabel:JLabel

+SelectionPanel()

WeatherFrame

-fileMenuBar:FileMenuBar
-selectionPanel:SelectionPanel
-dataPanel:DataPanel
-stationInfoList:StationInfoList
-dataInfoList:DataInfoList

+WeatherFrame()

StationInfoList

+getStationIdArray():String[]

StationInfo

+getDataSet():DataSet

YearlyData

-yearSet:TreeSet<Integer>

+getYearSet():TreeSet<Integer>
#add(day:DailyData):void

DataSet

+DataSet(dataSet:DataSet,
 years:ArrayList<Integer>)

DailyData

+getDate():String

1

«inner»
1

«inner»
1

«inner»

1

*

1

*

Class Design Outline

Your project 3 code will largely stay the same; changes are described below.
We outline our implementation of our GUI code. You may choose to follow

this design, if you wish. However, you must include all of the essential elements,
including: station, variable and year(s) selection; station display (including ID, Name
and City); variable display (including ID, Units and Description); maximum, average
and minimum statistics (including date of maximum and minimum).

11

� DailyData: change getDate() to only include month, day and year in the
returned string.

� YearlyData: add a yearSet class variable that will be used to track the set
of years for which data have been loaded. This will involve a small change to
add(). Also, add a getter for this set.

� DataSet: add a new constructor that takes as input an existing DataSet
and an array of years. This constructor creates a new DataSet instance that
includes only those years that are in the original DataSet and the years array.
Do not clone the years for this new instance – just add the references
to the appropriate years.

� StationInfo: add a method that returns the station’s DataSet.

� StationInfoList: add a method that returns an array of Strings that contain
the stationIds that have been loaded.

� (optional) WeatherFrame: Create a new class that is-a JFrame. This is the
primary window of the interface.

� (optional) FileMenuBar: Create an inner class to WeatherFrame that is-a
JMenuBar. This class handles the creation of the menu and the user inter-
action.

� (optional) SelectionPanel: Create an inner class that is-a JPanel that presents
the elements through which the user will select the station, variable and year(s).
This class contains a JList for each of these.

� (optional) DataPanel: Create an inner class that is-a JPanel that displays
the selected information and the associated statistics.

This class also provides an updateData() method that takes the selection infor-
mation from the SelectionPanel and updates the components of the Data-
Panel.

Note: optional here means that you can choose your own implementation. How-
ever, you must include this functionality somehow.

12

Notes

� Build your GUI incrementally. Focus on the “look and feel” of your GUI before
you add functionality. Then, add functionality one piece at a time.

� The use of multiple classes to represent the GUI gives us the opportunity
to logically partition the problem into smaller pieces. Because these pieces are
largely independent of one-another, this allows us to keep the complexity down.

� By setting up all of these classes (but one) as inner classes of a larger frame
class, this allows us to easily handle the dependencies between the various GUI
classes. In particular, inner classes have the ability to access variables and
methods of the outer class, even when they are private. In particular, an inner
class can refer to the outer class instance using:

WeatherFrame.this

and, hence, access variables and call methods using:

WeatherFrame.this.stationInfoList

WeatherFrame.this.setCursor()

In addition, one inner class can access pieces of another inner class. For exam-
ple, the SelectionPanel instance can tell the DataPanel instance to update
using:

WeatherFrame.this.dataPanel.updateData()

� JMenuItems can have ActionListeners attached to them.

� You can create a reference to your data directory this way:

new File(”./data”)

� JLists present a list of items to the user and allows the user to select one
(or possibly more). See the reference section below for a useful link that talks
about many options.

When the items in the list are known a priori and won’t change, the simple
way to create a JList is to hand it an array of Strings – one for each item. You
can then tell the JList to select the first item in the list automatically:

setSelectedIndex(0)

13

A SelectionListener can then be added to respond to new selections. The
currently selected element can be read from the JList using getSelected-
Value().

When the items are not known a priori or will change with time (as is the case
with the list of years, which we won’t know until we have loaded the data),
we must use some form of ListModel. The DefaultListModel class is a
List to which items can be added (this list can also be cleared). Every time
this list changes, the DefaultListModel will automatically inform the JList
that the list has changed, which will cause the display to be updated. Use the
ListModel as the input to the JList constructor.

� I placed each JList inside of a JScrollPane. This tells the GUI to use a
fixed size pane to present the information, but to provide scroll bars if the
information is too large to display in the fixed area.

� JTextFields, by default, are about receiving text input from a user. However,
they can be used as output-only components by setting their editable property
to false. They are convenient for this because we can define their width in
terms of the number of characters that they should hold.

� GridBagLayout works nice for this GUI.

� JTextArea will display multi-line text. I recommend the following configura-
tion:

setWrapStyleWord(true) and setLineWrap(true)

14

Final Steps

1. Generate Javadoc using Eclipse for all of your classes.

2. Open the project4/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that all of your classes are listed and that all of your documented methods
have the necessary documentation.

Submission Instructions

� All required components (source code and compiled documentation) are due
at 1:29 pm on Wednesday, November, 18th (i.e, before class begins).

� Prepare your submission file by creating a project4.zip file. This file must
include your entire project, including: src, and doc. Do not include your
data directory

� Submit your zip file to the project4 folder on D2L.

Grading: Code Review

All groups must attend a code review session in order to receive a grade for your
project. The procedure is as follows:

� Submit your project for grading to the D2L Dropbox, as described above.

� Any day following the submission, you may do the code review with the in-
structor or the TAs. For this, you have two options:

1. Schedule a 15-minute time slot in which to do the code review. We will use
Doodle to schedule these (a link will be posted on D2L). You must attend
the code review during your scheduled time. Failure to do so will leave
you only with option 2 (no rescheduling of code reviews is permitted).

2. “Walk-in” during an unscheduled office hour time. However, priority will
be given to those needing assistance in the labs and project.

� Both group members must be present for the code review.

15

� During the code review, we will discuss all aspects of the rubric, including:

1. The results of the tests that we have executed against your code.

2. The documentation that has been provided (all three levels of documen-
tation will be examined).

3. The implementation. Note that both group members must be able to
answer questions about the entire solution that the group has produced.

� If you complete your code review before the submission deadline, you have the
option of going back to make changes and resubmitting (by the deadline). If
you do this, you will need to return for another code review.

� The code review must be completed by Monday, December 7th to receive credit
for the project.

References

� The Java API: https://docs.oracle.com/javase/8/docs/api/

� JLists: https://docs.oracle.com/javase/tutorial/uiswing/components/
list.html

� JFileChooser: https://docs.oracle.com/javase/tutorial/uiswing/components/
filechooser.html

� Menus: https://docs.oracle.com/javase/tutorial/uiswing/components/
menu.html

16

https://docs.oracle.com/javase/8/docs/api/
https://docs.oracle.com/javase/tutorial/uiswing/components/list.html
https://docs.oracle.com/javase/tutorial/uiswing/components/list.html
https://docs.oracle.com/javase/tutorial/uiswing/components/filechooser.html
https://docs.oracle.com/javase/tutorial/uiswing/components/filechooser.html
https://docs.oracle.com/javase/tutorial/uiswing/components/menu.html
https://docs.oracle.com/javase/tutorial/uiswing/components/menu.html

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Implementation: 45 points

Program formatting: 10 points

(10) The program is properly formatted (including indentation, curly brace
and semicolon locations).

(5) There is one problem with program formatting.

(0) The program is not properly formatted.

Data types and method calls: 10 points

(10) The program is using proper data types and method calls.

(7) There is one error in data type or method call selection.

(4) There are two errors in data type or method call selection.

(0) There are three or more errors in data type and method call selection.

Required Methods: 15 points

(15) All of the required methods are implemented.

(10) One required method is not implemented

(5) Two required methods are not implemented.

(0) Two or more required methods are not implemented.

GUI Design: 10 points

(10) All required GUI elements are included.

(7) One key GUI element is missing

(4) Two key GUI elements are missing.

(0) Three or more key GUI elements are missing.

17

Proper Execution: 30 points

Output: 15 points

Two (2) points will be deducted for every test that your program fails
(note that these are tests that we provide).

Execution: 15 points

(15) The program executes with no errors.

(8) The program executes, but there is one minor error.

(0) The program does not execute.

Documentation and Submission: 25 points

Project Documentation: 4 points

(4) The java file contains all of the required documentation elements at
the top of the file.

(3) The java file is missing one of the required documentation elements.

(2) The java file is missing two of the required documentation elements.

(0) The java file is missing more than two of the required documentation
elements.

Method-Level Documentation: 9 points

(9) Every method contains all of the required documentation elements
ahead of the method prototype.

(6) The method documentation is missing one of the required documen-
tation elements.

(3) The method documentation is missing two of the required documen-
tation elements.

(0) The method documentation is missing more than two of the required
documentation elements.

Inline Documentation: 9 points

(9) Every method contains appropriate inline documentation.

(6) There is one missing or incorrect line of inline documentation.

(3) There are two missing or incorrect lines of inline documentation.

(0) There are more than two missing or incorrect lines of inline documen-
tation.

18

Submission: 3 points

(3) The correct zip file name is used and has the correct contents.

(2) The correct zip file name is used, but one required component is
missing.

(0) An incorrect zip file name is used or more than one required compo-
nent is missing.

19

