
Lab Exercise 12: Graphics and Serialization
CS 2334

November 10, 2015

Introduction

In lab 10, we learned about creating drawings using primitive shapes. To produce
these shapes, we made use of low level graphics generation methods provided by the
Graphics class. The final drawing was created in the main() method by creating a
fixed sequence of shapes.

In this lab, we will construct a Graphical User Interface that will enable a user to
create a drawing using any list of shapes. For any given shape, the user will be able
to select the type of shape, its color and whether the shape is filled. The position
and size of the shapes will then be determined by the user’s clicking and dragging in
the drawing panel. In addition, the GUI will provide a File Menu that enables the
user to load and save drawings, create a new drawing, and exit from the program.

Learning Objectives

By the end of this laboratory exercise, you should be able to:

1. Create a drop-down menu for a graphics frame

2. Attach actions to drop-down menu items

3. Interact with the user with appropriate pop-up dialog boxes and various mouse
events

4. Open files for reading and writing object-level data

5. Draw a set of primitive shapes on a panel

1

Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

Preparation

1. Import the existing lab12 implementation into your eclipse workspace.

(a) Download the lab12 implementation:
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab12/lab12.zip

(b) In Eclipse, select File/Import

(c) Select General/Existing projects into workspace. Click Next

(d) Select Select archive file. Browse to the lab12.zip file. Click Finish

2

http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab12/lab12.zip

Drawing with Shapes

Below is a picture of the graphical user interface after a partial drawing has been
completed:

The control panel to the right allows the user to do the following:

� Select between one of four shapes: oval, rectangle, triangle, and diamond

� Determine whether the shape is to be filled or not

� Select the color with which to be drawn

� Delete a shape

� Edit a shape’s color and/or fill

� Create a randomly generated object

Mouse events within the drawing panel lead to the following behavior:

3

� Pressing mouse button down: the current cursor position determines: one of
three things:

1. if in drawing mode: the first corner of the object to be drawn

2. if in edit or delete mode: the shape to be edited or deleted

� Moving the cursor while pressing down (in drawing mode): the current cursor
position determines the second corner of the object. A temporary object is
drawn to show the user what the object would look like if the choice is made
final

� Lifting up from the mouse button (in drawing mode): the current cursor posi-
tion determines the second corner of the object. A new object is added to the
official list of objects

Note that the first and second points selected by the user may have any relative
relationship. In creating the shape objects, these two points must be transformed
into appropriate parameters for the Shape constructors.

The position and extent of the three different objects is determined as follows:

� Rectangle and oval: the two points selected by the user determine the opposite
“corners” of these shapes. As in lab 10, the constructor for these shapes takes
as input the upper-left corner and the width and height (or diameters).

� Triangle: we are only considering isosceles triangles with the base that is aligned
along the x axis. The first corner specified by the user defines the location of
one vertex along the base of the triangle. The difference between the first and
second corners specifies the length of the base and the height of the triangle.

� Diamond: the point selected by the user defines one vertex of the diamond.
The second selected point determines the orientation of the diamond relative
to the first point, as well as the side length. The diamond constructor takes as
input the leftmost point and the side length.

4

The graphical user interface also includes a file menu:

The actions for the file menu are:

� New: after confirming with the user, clears the drawing

� Open: after prompting the user for a file to open, a drawing is read from the
file. Errors are indicated with pop-up dialog boxes

� Save: after prompting the user for a file to which to save, the drawing is
written to the file. Errors are indicated with pop-up dialog boxes

� Exit: the program exits immediately

UML

The UML for this lab is given below. The classes in the lower half are only slightly
modified from lab 10. They have been provided to you completely. The classes in
the upper half of the UML are heavily modified from lab 10 or have been added for
this lab.

5

JMenuBar

JPanel

«anonymous»
ActionListener

FileMenuBar

- serialVersionUID: long
- menu: JMenu
- menuExit: JMenuItem
- menuClear: JMenuItem
- menuOpen: JMenuItem
- menuSave: JMenuItem
- fileChooser: JFileChooser

+ FileMenuBar()

ControlPanel

- serialVersionUID: long
- shapePanel: JPanel
- colorPanel: JPanel
- actionPanel: JPanel
- ovalButton: JRadioButton
- rectangleButton: JRadioButton
- triangleButton: JRadioButton
- diamondButton: JRadioButton
- group: ButtonGroup
- fillBox: JCheckBox
- colorChooser: JButton
- color: Color
- deleteButton: JButton
- editButton: JButton
- randomButton: JButton

+ ControlPanel()
+ getActionPanel(): JPanel
+ getFillBox(): JCheckBox
+ setColor(color: Color): void

MouseAdapter

MouseHandler

+ mousePressed(e: MouseEvent): void
+ mouseReleased(e: MouseEvent): void
+ mouseDragged(e: MouseEvent): void
- createShape(): Shape

Serializable
«Interface»

Diamond

- serialVersionUID: long

+ Diamond(leftCorner:Point, edgeLength:int,
 color:Color, filled:boolean)

Triangle

- serialVersionUID: long

+ Triangle(pointB:Point, base:int,
 height:int, color:Color, filled:boolean)

Square

- serialVersionUID: long

+ Square(pointUL:Point, width:int,
 color:Color, filled:boolean)

Rectangle

- serialVersionUID: long

+ Rectangle(pointUL:Point, width:int,
 height:int, color:Color, filled:boolean)

Circle

- serialVersionUID: long

+ Circle(pointUL:Point, diameter:int,
 color:Color, filled:boolean)
+ getDiameter():int

JPanel
DrawPanel

- serialVersionUID: long
- shapeList: ArrayList<Shape>
- tempShape: Shape
- shapeIndex: int
- x0: int
- x1: int
- y0: int
- y1: int
- drawingFlag: Boolean
- frame: DrawFrame

+ DrawPanel(frame: DrawFrame)
+ addShape(shape:Shape):void
paintComponent(g:Graphics):void
getShapeList(): ArrayList<Shape>
setShapeList(ArrayList<Shape>: shapes): void
clearShapeList(): void
removeShape(index: int): void
+ getShapeIndex(): int

JFrame

DrawFrame

- serialVersionUID: long
- drawPanel: DrawPanel
- controlPanel: ControlPanel
- editFlag: Boolean
- deleteFlag: Boolean
- rand: Random

+ DrawFrame()
+ main(args:String[]):void
+ isOval(): Boolean
+ isRectangle(): Boolean
+ isTriangle(): Boolean
+ isDiamond(): Boolean
+ isFilled(): Boolean
+ isEditing(): Boolean
+ isDeleting(): Boolean
+ getColor(): Color
+ getControlPanel(): ControlPanel

Oval

- serialVersionUID: long
- diameter1:int
- diameter2:int

+ Oval(pointUL:Point, diameter1:int,
 diameter2:int, color:Color, filled:boolean)
+ getDiameter1():int
+ getDiameter2():int
+ draw(g:Graphics):void
+ contains(point:Point): Boolean

Drawable
«Interface»

+ draw(g:Graphics):void

Shape

- serialVersionUID: long
location:Point[]
- color:Color
- filled:boolean

+ Shape(color:Color, filled:boolean)
+ getColor(): Color
+ isFilled(): boolean
+ getLocation(): Point[]
+ setColor(color:Color): void
+ setFilled(filled:Boolean): void
+ contains(point:Point): Boolean

java.awt.Color

java.awt.Point
MyPolygon

- serialVersionUID: long

+ Polygon(color:Color, filled:boolean)
+ draw(g:Graphics): void
+ contains(point:Point): Boolean

3

5

4

«inner»

1

«inner»
1

«inner»
1

1

*

1

1

*

Lab 12: Specific Instructions

All of the classes shown in the UML are provided in lab12.zip.

1. Most of the classes are implemented. The key components that you must add
are:

� DrawPanel

– paintComponent(): complete implementation

� DrawPanel.MouseHandler

– mousePressed(): handle what a mouse press means when in the vari-
ous modes - drawing, editing, or deleting

– mouseDragged(): handle updating the temporary shape when in draw-
ing mode

6

– mouseReleased(): finalize the shape being drawn and add it to the
shape list when in drawing mode

– createShape(): create the correct shape, depending on what what
points have been selected by the mouse, and which shape type, color
and fill that the user has chosen.

� DrawFrame.FileMenuBar

– Complete the implementation of the menu

– Add code for behavior of the four menu items

� DrawFrame.ControlPanel

– Define the behavior for the color button

2. Do not add functionality to the classes beyond what has been specified

3. Don’t forget to document as you go!

Final Steps

1. Generate Javadoc using Eclipse.

� Select Project/Generate Javadoc...

� Make sure that your project is selected, as well as all of the Java source
files

� Select Private visibility

� Use the default destination folder

� Click Finish

2. Open the lab12/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that that all of your classes are listed and that all of your documented
methods have the necessary documentation.

3. If you complete the above instructions during lab, you may have your imple-
mentation checked by one of the TAs.

7

Submission Instructions

� All required components (source code and compiled documentation) are due
at 11:59pm on Friday, November 11th.

� Method 1: Submit through Eclipse

1. From the Window menu, select Preferences/Configured Assignment.

2. Select your project.

3. From the Project menu, select Submit Assignment.

4. Under Select the assignment to submit, select Lab 12: Interactive Drawing.

5. Click Change Username or Password.... Enter your Web-Cat username
and password. Click OK. You should only need to do this step once per
session.

6. Click Finish.

7. Your browser should automatically open a Web-Cat page that shows your
submission being graded. After a short wait, the page will show a report
of your submission. See the main class web page for a link that describes
the Web-Cat output.

� Method 2: Submit directly to the Web-Cat server

1. From the File menu, select Export.

2. Select Java/JAR File. Click Next.

3. Select and expand your project folder.

4. Select your src and doc folders.

5. Select Export Java source files and resources.

6. Select an export destination location (e.g., your Documents folder/direc-
tory). This file should end in .jar

7. Select Add directory entries.

8. Click Finish.

9. In your web browser, login to the Web-Cat2 server.

10. Click the Submit button.

11. Browse to your jar file.

8

12. Click the Upload Submission button.

13. The next page will give you a list of all files that you are uploading. If
you selected the correct jar file, then click the Confirm button.

14. Your browser will then open a Web-Cat page that shows your submission
being graded. After a short wait, the page will show a report of your
submission. See the main class web page for a link that describes the
Web-Cat output.

9

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 45 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against a set of tests (called Unit Tests). NOTE: The tests
used for this lab will focus on button interactions and values inside textFields -
a style of testing different than what we have done before. These unit tests will
not be visible to you, but the Web-Cat server will inform you as to which tests
your code passed/failed. This grade component is proportional to the fraction
of tests that your code passes (so 22.5 points means that your code passed half
of the tests)

Style/Coding: 20 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader (typically sometime after the lab
deadline). Any errors in your program will be noted in the code stored on
the Web-Cat server, and two points will be deducted for each. Possible errors
include:

� Non-descriptive or inappropriate project- or method-level documentation
(up to 10 points)

� Missing or inappropriate inline documentation (2 points per violation; up
to 10 points)

� Inappropriate choice of variable or method names (2 points per violation;
up to 10 points)

� Inefficient implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

� Incorrect implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

10

If you do not submit compiled Javadoc for your lab, 5 points will be deducted
from this part of your score.

Note that the grader may also give warnings or other feedback. Although no
points will be deducted, the issues should be addressed in future submissions
(where points may be deducted).

Bonus: up to 5 points

You will earn one bonus point for every two hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose ten points for every minute that your assignment is submitted
late.

11

