
Lab Exercise 2
CS 2334

September 1, 2016

Introduction

Producing quality code requires us to take steps to ensure that our code actually
performs as we expect it to. We must write careful specifications for each method
that we implement. For a given method, this includes what the inputs are (i.e.,
the parameters and their expected values), and the results that are to be produced
(return value and side effects). Once a method or group of methods is implemented,
we must also perform appropriate testing. Unit testing is a formal technique that
requires us to implement a set of tests that ensure that each piece of code is exercised
and produces the correct results. In practice, each time a code base is modified, this
set of tests is executed before the code is released for general use.

In this laboratory, we will use the JUnit tool to produce and evaluate a set of
tests. We have provided a specification and implementation of a couple classes. Your
task is to write a set of tests for one of these classes, and discover the bugs in our
implementation and fix them.

Learning Objectives

By the end of this laboratory exercise, you should be able to:

1. Read and understand method-level specifications

2. Read and understand previously written code

3. Create JUnit test cases

1

4. Use JUnit tests to discover bugs and to ultimately verify correctness of the
methods

5. Correct all bugs in the code base so that all tests pass successfully

Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

Preparation

1. Check to see if the EclEmma plug-in is installed:

(a) Help menu: select About Eclipse Platform / Installation Details

(b) You will see a list of installed plugins. If EclEmma is on the list, then you
are done.

2. If not already installed, then install the EclEmma plug-in:

(a) Help menu: select Install new software

(b) Work with box: enter http://update.eclemma.org

(c) Select EclEmma from the list. Click Next

(d) Read and accept the license agreement. Click Finish

3. Create a new project called lab2

4. Download the lab 2 implementation and unzip the file into your file system:
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab2/lab2.zip

5. Import lab 2 into your Eclipse workspace:

(a) In Eclipse, select your lab2 project

(b) Select File/Import

(c) Select General/File System. Click Next

(d) For From Directory: browse to the folder that contains the unzipped lab2,
and then into src. Click OK.

2

http://update.eclemma.org
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab2/lab2.zip

(e) Select the checkboxes for all of the Java files.

(f) Into folder: browse to your new project and then into src. Click OK.

(g) Click Finish.

6. Import JUnit into the project

(a) Right-click on lab2 and select properties

(b) Select Java Build Path

(c) Click Libraries tab

(d) If this project is imported: you may need to select JUnit4 and click Re-
move

(e) Click Add Library

(f) Select JUnit. Click Next

(g) Select the most recent version (JUnit 4)

(h) Click Finish

(i) Click OK

7. Carefully examine the code for the Item and Inventory classes. Note that this
code has a number of bugs in it, which we will find over the course of solving
this lab

3

Unit Tests

Within the lab2.zip file, we have included the ItemTest class as an example:

import org . junit . Test ;
import org . junit . Assert ;

/**
* Test ing c l a s s f o r Item ob j e c t
*

* @author Taner Davis
* @version 20160827
*/

pub l i c c l a s s ItemTest

{

/**
* Test the empty Item cons t ruc to r
*/

@Test

pub l i c void emptyItemConstructorTest ()
{

//Use the d e f au l t con s t ruc to r
Item item = new Item () ;

//The name should be nu l l , and the p r i c e and weight zero
Assert . assertNull (item . getName ()) ;
Assert . assertEquals (0 , item . getPrice ()) ;
Assert . assertEquals (0 , item . getWeight () , 0 . 01) ;

}

/**
* Test the Item cons t ruc to r with only a St r ing parameter
*/

@Test

pub l i c void singleParameterConstructorTest ()
{

//Use the s i n g l e−parameter con s t ruc to r
Item item = new Item (” Porta l Gun”) ;

/*
* The name should match i t s i n i t i a l parameter ,
* the p r i c e and weight should be zero
*/

Assert . assertEquals (” Porta l Gun” , item . getName ()) ;
Assert . assertEquals (0 , item . getPrice ()) ;
Assert . assertEquals (0 , item . getWeight () , 0 . 01) ;

}

4

/**
* Test the Item cons t ruc to r us ing a s t r i n g parameter
* and a double weight
*/

@Test

pub l i c void doubleParameterConstructorTest ()
{

//Use the double−parameter con s t ruc to r
Item item = new Item (” Batt l e Axe” , 98 . 7) ;

/*
* The name should match i t s i n i t i a l parameter ,
* the weight should equal i t s i n i t i a l value ,
* and the p r i c e should be zero
*/

Assert . assertEquals (” Batt l e Axe” , item . getName ()) ;
Assert . assertEquals (0 , item . getPrice ()) ;
Assert . assertEquals (9 8 . 7 , item . getWeight () , 0 . 01) ;

}

/**
* Test f u l l c on s t ruc to r and the g e t t e r s
*/

@Test

pub l i c void fullConstructorTest ()
{

// Use f u l l c on s t ruc to r
Item item = new Item (”Whip” , 10 . 1 , 80) ;

/*
* The name should match i t s i n i t i a l parameter ,
* and the weight and p r i c e should equal t h e i r
* i n i t i a l va lue s
*/

Assert . assertEquals (80 , item . getPrice ()) ;
Assert . assertEquals (1 0 . 1 , item . getWeight () , 0 . 01) ;
Assert . assertTrue (item . getName () . equals (”Whip”)) ;

}

5

/**
* Test a l l mutator methods
*/

@Test

pub l i c void allMutatorsTest ()
{

// Use f u l l c on s t ruc to r
Item item = new Item (”Change This ” , 999 .9 , 999) ;

// Set name , pr i c e , and weight p r op e r t i e s
item . setName (”Scythe ”) ;
item . setPrice (125) ;
item . setWeight (3 8 . 3) ;

/*
* The name should match the parameter passed
* i n t o the mutator methods , and the weight and
* p r i c e should equal the va lue s passed to t h e i r
* r e s p e c t i v e mutator methods .
*/

Assert . assertEquals (125 , item . getPrice ()) ;
Assert . assertEquals (3 8 . 3 , item . getWeight () , 0 . 01) ;
Assert . assertTrue (item . getName () . equals (”Scythe ”)) ;

}

/**
* Test the St r ing r ep r e s en t a t i on o f an Item
*/

@Test

pub l i c void itemToStringTest ()
{

Item item = new Item (”MegaBuster” , 27 . 9 , 500) ;

Assert . assertEquals (”MegaBuster , 27 .9 Fantasy Units , 500 Gold\n” , item .←↩
toString ()) ;

}
}

Note that, depending on your particular OS/Java installation, the import lines
at the top of the testing class may be different. If the Assert class is undefined, then
the simple thing to do is to first delete these two import lines. Then, mousing over
one of the undefined Assert references, Eclipse will give you the option of importing
the correct class.

A unit test file is a class in its own right, containing one or more methods (often
named in a convention similar to allMutatorsTest, singleParameterConstructorTest,
etc.). Each of these methods are preceded by the @test tag. This tells the compiler
to configure this method as one of the tests to be executed.

Each unit test contains three sections of code (which may be intertwined):

1. Creation of a set of objects that will be used for testing

6

2. Calling of the methods to be tested, often storing their results

3. A set of Assertions that test the results returned by the method calls. Each
assertion is a declaration by the test code of some condition that must hold if
the code is performing correctly. A typical test will have several such assertions.

In fullConstructorTest() in ItemTest.java, an item object is created with the name
“Whip” and a weight and price (in gold pieces) of 10.1 and 80, respectively. This
test method confirms that each of these three properties is set correctly during the
construction of the object. For example:

Assert . assertEquals (1 0 . 1 , item . getWeight () , 0 . 01) ;

queries the object’s weight through the weight getter method and compares it to
the expected value of 10.1 (expected since this is the value that was used in the
constructor). Remember that it is not appropriate to simply test the equality of
two doubles (since two values can be arbitrarily close to one-another and still not be
exactly equal). Instead, this double version of assertEquals() asks whether the two
values are within 0.01 of one another. If this is the case, then this assertion will pass.
On the other hand, if the returned price is very different than the expected value,
then the test will fail.

The assertTrue() method will test an arbitrary condition. For example:

Assert . assertTrue (item . getName () . equals (”Master Sword”)) ;

states the the name must be exactly equal to “Master Sword” (remember that
String.equals() requires an exact string match in order to return true). Through
the use of this type of assertion, one can check any Boolean condition. A link to the
full Assert class is given below.

Within Eclipse, you can execute a unit test by pressing the button (upper
tool pane) and selecting your unit test. A JUnit window pane will appear on the
left-hand-side of the interface and show you how many tests passed/failed. If a test
fails, you will be able to click on it to see exactly which line resulted in the failure.
A failure indicates a bug in the implementation of your class (or in the test itself).

EclEmma will highlight your tested code to indicate how well it is covered by the
unit tests. In particular, Eclipse will highlight each line of code accordingly:

� Green: the line has been “touched” by one or more tests

� Red: the line hs not been touched

7

� Yellow: only one part of the branch (if, while, for, switch) has been touched
by the tests

Your goal is to have all of your tested class be highlighted in green.
When you are writing tests, you should not rely on your implementation to pro-

duce the expected values. Instead, you should work out by hand what the expected
values should be. This way, your test is independent of your implementation. Also,
it is good practice to write your tests before you write your methods.

Inventory Unit Test

Your task for this lab is to write a set of unit tests for the methods in the Inventory
class. Here is the procedure:

1. Create a new JUnit test class:

(a) In the package explorer, right-click on Inventory.java

(b) Select New/JUnit Test Case

(c) Select New JUnit 4 test

(d) The source folder should be lab2/src

(e) The name should be InventoryTest

(f) Class under test should be Inventory

(g) Click Finish. This will create and open a new class called InventoryTest

2. Write a set of tests that confirm that all methods of the Inventory class perform
correctly. Note that in these tests, you will need to create at least one Inventory
object and populate it with a number of Item objects of various names, weights
and prices. The set of tests that you write must cover all of the cases in the
methods in this class. This means that you must test all possible paths through
the code (e.g., every if and else branch).

3. As you execute your tests, you will discover a number of errors in the Inventory
implementation. Fix these errors and confirm that all of the bugs are resolved
using your unit tests.

8

Final Steps

1. Generate Javadoc using Eclipse.

� Select Project/Generate Javadoc...

� Make sure that your project is selected, as are the Driver, Item and In-
ventory classes

� Select Private visibility

� Use the default destination folder

� Click Finish

2. Open the lab2/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that that both of your classes are listed and that all of your documented
methods have the necessary documentation.

3. If you complete the above instructions during lab, you may have your imple-
mentation checked by one of the TAs.

Submission instructions

Before submission, finish testing your program by executing your unit tests. If your
program passes all tests, then you are ready to attempt a submission. Here are the
details:

� All required components (source code and compiled documentation) are due at
11:59pm on Friday, September 2. Submission must be done through the
Web-Cat server.

� Method 1: Submit through Eclipse

1. Select your project.

2. From the Project menu, select Submit Assignment.

3. Under Select the assignment to submit, select CS 2334/Lab 02 (2334):
Inventory.

4. Click Change Username or Password.... Enter your Web-Cat username
and password. Click OK. You should only need to do this step once per
session.

9

5. Click Finish.

6. Your browser should automatically open a Web-Cat page that shows your
submission being graded. After a short wait, the page will show a report
of your submission. See the main class web page for a link that describes
the Web-Cat output.

� Method 2: Submit directly to the Web-Cat server

1. From the File menu, select Export.

2. Select Java/JAR File. Click Next.

3. Select and expand your project folder.

4. Select your src and doc folders.

5. Select Export Java source files and resources.

6. Select an export destination location (e.g., your Documents folder/direc-
tory). This file should end in .jar

7. Select Add directory entries.

8. Click Finish.

9. In your web browser, login to the Web-Cat server.

10. Click the Submit button.

11. Browse to your jar file.

12. Click the Upload Submission button.

13. The next page will give you a list of all files that you are uploading. If
you selected the correct jar file, then click the Confirm button.

14. Your browser will then open a Web-Cat page that shows your submission
being graded. After a short wait, the page will show a report of your
submission. See the main class web page for a link that describes the
Web-Cat output.

References

� The API of the Assert class can be found at:
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

� JUnit tutorial in Eclipse:
https://dzone.com/articles/junit-tutorial-beginners

10

http://junit.sourceforge.net/javadoc/org/junit/Assert.html
https://dzone.com/articles/junit-tutorial-beginners

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 45 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against a set of tests (called Unit Tests). These unit tests will
not be visible to you, but the Web-Cat server will inform you as to which tests
your code passed/failed. This grade component is proportional to the fraction
of tests that your code passes (so 22.5 points means that your code passed half
of the tests)

Style/Coding: 20 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader (typically sometime after the lab
deadline). Any errors in your program will be noted in the code stored on
the Web-Cat server, and two points will be deducted for each. Possible errors
include:

� Non-descriptive or inappropriate project- or method-level documentation

� Missing or inappropriate inline documentation

� Inappropriate choice of variable or method names

� Inefficient implementation of an algorithm

� Incorrect implementation of an algorithm

� Incomplete coverage of your Unit Tests. We expect that your unit tests
will test all lines of your code

If you do not submit compiled javadoc for your lab, 5 points will be deducted
from this part of your score.

11

Note that the grader may also give warnings or other feedback. Although
no points will be deducted, the issues should be addressed in future submis-
sions(where points may be deducted).

12

