
Lab Exercise 4: Inheritance
CS 2334

September 15, 2016

Introduction

With this lab, we consider relationships between objects. Think about the records
that we keep for every item used to compute your grade in this course. Each of these
GradedItems has a name, a date and a grade. However, depending on the type of
the GradedItem, other information might need to be stored, such as a description of
a project or the name of a file used for testing your project. We will use class inher-
itance in this lab to capture the fact that different item types have some properties
in common, but differ in other properties.

For this laboratory, you will create classes for graded items, exams assignments
and a list of graded items. Think about how all these objects are related. We have
provided a complete UML diagram showing these relationships. Your task is to
implement these classes as they are shown and a complete set of unit tests.

Learning Objectives

By the end of this laboratory exercise, you should be able to:

1. Read and understand UML diagrams

2. Implement classes from a given specification

3. Create inheritance relationships

4. Understand the difference between is-a and has-a relationships

5. Develop testing procedures for your own code

1

Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

Preparation

1. Import the existing lab4 implementation into your eclipse workspace.

(a) Download the lab4 implementation:
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab4/lab4.zip

(b) In Eclipse, select File/Import

(c) Select General/Existing projects into workspace. Click Next

(d) Select Select archive file. Browse to the lab4.zip file. Click Finish

(e) In Package Explorer: Select lab4

(f) Right click, select Build Path/Configure Build Path

(g) Select Java Build Path

(h) Click on the Libraries tab

(i) Click Add Library

(j) Select JRE System Library. Click Next

(k) Select Workspace default JRE. Click Finish

(l) Click Add Library

(m) Select Junit. Click Next

(n) Select JUnit4. Click Finish

(o) Click Apply (if Eclipse shows this button) and then OK

(p) Should one or more source files be flagged in the Package Explorer as hav-
ing errors (declared package “” does not match expected package “src”):
add a space to the class file, save it, close the window and reopen the
window.

2

http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab4/lab4.zip

Representing Graded Items

Below is the UML representation of a set of classes that represent items that are
used to compute your course grade. Your task is to implement this set of classes and
the associated set of Junit tests.

GradedItemList

-gradedItem:ArrayList<GradedItem>

+GradedItemList()
+addItem(item:GradedItem):void
+averageGrade():double
+toString():String

Assignment

-specification:String
-data:String

+Assignment(name:String, month:int,
 day:int, hour:int, minute:int,
 specification:String, data:String)
+toString():String

Exam

-problemSet:String

+Exam(name:String, month:int,
 day:int, hour:int, minute:int,
 problemSet:String)
+toString():String

GradedItem

-name:String
-grade:double
-month:int
-day:int
-hour:int
-minute:int

+GradedItem(name:String, month:int,
 day:int, hour:int, minute:int)
+getName():String
+getMonth(): int
+getDay(): int
+getHour(): int
+getMinute(): int
+getGrade():double
+setGrade(grade:double):void
+toString():String

*

The line from Exam to GradedItem indicates that Exam is-a GradedItem. You
should use inheritance to capture this relationship. Likewise, for the Assignment and
GradedItem classes.

The line from GradedItemList to GradedItem indicates that GradedItemList has-
a GradedItem. Observe that there is a GradedItem attribute (instance variable) in
the middle section of the GradedItemList box. Other than including this attribute,
there is nothing special to be done for a has-a relationship. The “*” on this re-
lationship indicates that the GradedItemList can have any number of GradedItem
objects. This fact is captured in the GradedItemList through the use of the ArrayList
of GradedItems (this is the meaning of the ArrayList<GradedItem> notation in the
type definition).

3

Lab 4: Specific Instructions

1. Create a new Java class for each object class described in the UML diagram

� Be sure that the class name is exactly as shown

� You must use the default package, meaning that the package field must
be left blank when you create the class

2. Implement the designated attributes and methods for each class

� Use the same spelling and visibility for instance variables and method
names as shown in the UML

� Do not add functionality to the classes beyond what has been specified

� Don’t forget to document as you go!

3. GradedItem.toString(): for a graded item by the name of “Final”, a month of
12, day of 13, hour of 8, minutes of zero and a grade of 0.78, toString() must
return a String in the following format:

” Fina l (date : 12−13 at 08 : 00) : grade = 0.78 ”

Note that the quotes are not part of the String. Also note that each of month,
day, hour and minute must be represented using exactly two digits, and that
the grade must have exactly two digits following the decimal point.

4. Exam.toString(): for the same final exam as above and a problemSet of “fi-
nal.pdf”, toString() must return a String in the following format:

” Fina l (date : 12−13 at 08 : 00) : grade = 0 . 7 8 : problem se t = f i n a l . pdf ”

Note that this toString() method must make use of the toString() method
provided by GradedItem.

5. Assignment.toString(): for an assignment called “Lab 1”, a specification of
“lab1.pdf” and data of “calendar.csv”, toString() must return a String in the
following format:

”Lab 1 (date : 08−26 at 23 : 59) : grade = 0 . 5 0 : s p e c i f i c a t i o n = lab1 . pdf ; data ←↩
source = ca l endar . csv ”

4

Note that the arrow on the right-hand side of the box is not part of the returned
String (there is one space between “data” and “source”) and that this String
occupies exactly one line. Alsoe note that this toString() method must make
use of the toString() method provided by GradedItem.

6. GradedItemList.toString() must return a String that is a concatenation of all
of the individual items in the list, with a newline character (“\n”) after each
item. The order of the items must be the same order as they were added to
the GradedItemList.

7. Create one or more JUnit classes to thoroughly test all of your code

� You need to convince yourself that all of your primary classes are covered
and that they are working properly

� We provide a small example test class. However, this test class is incom-
plete

� We will test your code with a separate set of unit tests

Final Steps

1. Generate Javadoc using Eclipse.

� Select Project/Generate Javadoc...

� Make sure that your project is selected, as are the Driver, Pokemon, Poke-
monTeam classes

� Select Private visibility

� Use the default destination folder

� Click Finish

2. Open the lab4/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that that both of your classes are listed and that all of your documented
methods have the necessary documentation.

5

Submission Instructions

� All required components (source code and compiled documentation) are due
at 11:59:00pm on Friday, September 16th.

� Method 1: Submit through Eclipse

1. From the Window menu, select Preferences/Configured Assignment.

2. Select your project.

3. From the Project menu, select Submit Assignment.

4. Under Select the assignment to submit, select CS 2334/Lab 04 (2334):
Inheritance.

5. Click Change Username or Password.... Enter your Web-Cat username
and password. Click OK. You should only need to do this step once per
session.

6. Click Finish.

7. Your browser should automatically open a Web-Cat page that shows your
submission being graded. After a short wait, the page will show a report
of your submission. See the main class web page for a link that describes
the Web-Cat output.

� Method 2: Submit directly to the Web-Cat server

1. From the File menu, select Export.

2. Select Java/JAR File. Click Next.

3. Select and expand your project folder.

4. Select your src and doc folders. Do not include csv files.

5. Select Export Java source files and resources.

6. Select an export destination location (e.g., your Documents folder/direc-
tory). This file should end in .jar

7. Select Add directory entries.

8. Click Finish.

9. In your web browser, login to the Web-Cat server.

10. Click the Submit button.

11. Browse to your jar file.

6

12. Click the Upload Submission button.

13. The next page will give you a list of all files that you are uploading. If
you selected the correct jar file, then click the Confirm button.

14. Your browser will then open a Web-Cat page that shows your submission
being graded. After a short wait, the page will show a report of your
submission. See the main class web page for a link that describes the
Web-Cat output.

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 45 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against a set of tests (called Unit Tests). These unit tests will
not be visible to you, but the Web-Cat server will inform you as to which tests
your code passed/failed. This grade component is proportional to the fraction
of tests that your code passes (so 22.5 points means that your code passed half
of the tests)

Style/Coding: 20 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader (typically sometime after the lab
deadline). Any errors in your program will be noted in the code stored on
the Web-Cat server, and two points will be deducted for each. Possible errors
include:

� Non-descriptive or inappropriate project- or method-level documentation

� Missing or inappropriate inline documentation

� Inappropriate choice of variable or method names

7

� Inefficient implementation of an algorithm

� Incorrect implementation of an algorithm

� Incomplete coverage of your Unit Tests. We expect that your unit tests
will test all lines of your code

If you do not submit compiled Javadoc for your lab, 5 points will be deducted
from this part of your score.

Note that the grader may also give warnings or other feedback. Although
no points will be deducted, the issues should be addressed in future submis-
sions(where points may be deducted).

Bonus: up to 5 points

You will earn one bonus point for every two hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose ten points for every minute that your assignment is submitted
late.

8

