Lab Exercise 5: Exceptions
CS 2334

September 22, 2016

Introduction

This lab focuses on the use of Exceptions to catch a variety of errors that can occur,
allowing your program to take appropriate corrective action. You will implement a
simple calculator program that allows the user to specify an operator and up to two
operands (arguments). Your program will parse these inputs, perform the operation
and print out the result. If an error occurs during any of these steps, your program
will catch the errors and provide appropriate feedback to the user.

Learning Objectives

By the end of this laboratory exercise, you should be able to:

1. Create a program that interacts with a user through text
2. Implement and throw a custom Exception

3. Robustly handle Exceptions with a try/catch block

Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

Preparation

1. Download the lab5 partial implementation:
http://www.cs.ou.edu/~fagg/classes/cs2334/1labs/lab5/1abb.zip

User Interaction

Each line that is typed by the user is interpreted as a potential expression. Valid
expressions consist of a sequence of one, two or three tokens (each token is separated
from the preceding token by a space), and may take on one of the following forms:

e 1 token: [quit]. The program responds by exiting

e 2 tokens: [UOP N], where N is an integer and UOP is a unary operator (-).
The program responds by displaying the negative of the given integer

e 3 tokens: [N1 BOP N2], where N1 and N2 are integers and BOP is a binary
operator (+, -, *, /, or %). The program responds by displaying the result of
applying the designated operator to the two arguments

Inputs resulting in an illegal integer operation or not following one of these for-
mats result in the display of a specific error message.

http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab5/lab5.zip

Below is an example interaction with a user. Note that both the user’s input and
the program’s response are shown.

4 + 2

The result is: 6
4247

Illegal input.

4 — 2

The result is: 2
4/ 2

The result is: 2
4 % 2

The result is: 0
foo + 2

Illegal argument.
42 % 3

The result is: 126
42 x bar

Illegal argument.
42 © 3

Illegal operator.
32 7 baz

Illegal argument.
foobar ~ 3
Illegal argument.

4/0
Divide by =zero error.
42 % 0

Mod by zero error.

—4

Illegal input.

— 4

The result is: —4
QUIT

Exit.

Class Design

Below is the UML representation of the set of classes that you are to implement
for this lab. It is important that you adhere to the instance variables and method
names provided in this diagram (we will be executing our own JUnit tests against
your code). In this diagram, you are seeing some new notation: the dashed open
arrow means that there is some loose relationship between the classes. It is not an
is-a relationship (class inheritance), or even a has-a relationship (a class or instance
variable referring to another class). This relationship is much more nebulous — here,
we are acknowledging that one class has local variables that reference another class.

The Ezception class is provided by the Java API. The CalculatorException class

is derived from FEzception, and adds an instance variable, called quit. This flag is
set to true to indicate that the program should terminate. This class provides two
different constructors: one that allows the caller to set the quit flag; the other sets
the quit flag to false by default.

CalculatorException Calculator
-quit:boolean
+CalculatorException(message:String) K — =
+CalculatorException(message:String, <« * tr?: Wt Ct | Tt. rtEnxn ti.”:1t
quit:poolean) + rOASn acr::ao incen_ orin : lean
+isQuit():boolean * *
N
I
|
I
I
Driver
P Stringl)voi

The Calculator class provides two methods. The following method is responsible
for taking as input a single String that is to be interpreted as an expression.

public static boolean parseAndCompute(String input)

This method:

1. Separates the String into a set of tokens (substrings that are separated by
spaces)

2. Calls compute() to evaluate the expression
3. Prints out the result or an error message

4. Returns a boolean to indicate whether the program should terminate

The compute() method is responsible for interpreting the set of tokens and pro-
ducing a result:

public static int compute(String|[] tokens) throws CalculatorException

If there are two or three tokens that make up a valid expression, then this method
returns the int result. In all other cases, this method throws a CalculatorFException,
encoding the error String in the message property of the Exception. When there is
exactly one token that is equal to the String “quit” with any casing, the exception’s
quit flag is set to true. The details for the appropriate exception message are given
in the code skeleton that we provide.

You must implement your own JUnit test class called CalculatorTest. We have
provided CalculatorSampleTest that gives a few hints as to how to test with Excep-
tions.

The Driver class is provided and is responsible for opening an input stream from
the user and repeatedly reading and evaluating lines of input until a quit has been
received.

Implementation Steps

1. Complete the implementation of the CalculatorException class.
2. Complete the implementation of the Calculator class.

3. Implement a JUnit test for the Calculator class.

Final Steps

1. Generate Javadoc using Eclipse.

e Select Project/Generate Javadoc...

e Make sure that your project is selected, including all of the Java files

Select Private visibility
Use the default destination folder
Click Finish

2. Open the lab5/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that that both of your classes are listed and that all of your documented
methods have the necessary documentation.

Submission Instructions

e All required components (source code and compiled documentation) are due
at 11:59:00pm on Friday, September 23rd.

e Method 1: Submit through Eclipse

1.
2
3.
4
5

From the Window menu, select Preferences/Configured Assignment.

. Select your project.

From the Project menu, select Submit Assignment.

. Under Select the assignment to submit, select Lab 5: Fxceptions.

. Click Change Username or Password.... Enter your Web-Cat username

and password. Click OK. You should only need to do this step once per
session.

6. Click Finish.

7. Your browser should automatically open a Web-Cat page that shows your

submission being graded. After a short wait, the page will show a report
of your submission. See the main class web page for a link that describes
the Web-Cat output.

e Method 2: Submit directly to the Web-Cat server

AR AN e A

From the File menu, select Ezport.

Select Java/JAR File. Click Next.

Select and expand your project folder.

Select your src and doc folders.

Select Ezport Java source files and resources.

Select an export destination location (e.g., your Documents folder/direc-
tory). This file should end in .jar

Select Add directory entries.

8. Click Finish.

9. In your web browser, login to the Web-Cat server.

10.
11.
12.
13.

14.

Hints

Click the Submat button.
Browse to your jar file.
Click the Upload Submission button.

The next page will give you a list of all files that you are uploading. If
you selected the correct jar file, then click the Confirm button.

Your browser will then open a Web-Cat page that shows your submission
being graded. After a short wait, the page will show a report of your
submission. See the main class web page for a link that describes the
Web-Cat output.

e The message property of Ezception should be used to encode error messages.

e It is bad coding style for a catch statement to catch all Ezceptions (unless
you really mean to catch all exceptions). Instead, you should only catch the
specific exceptions that you expect to happen. This way, other, unexpected
exceptions will still result in a halt of your program, making it easier to track
down problems.

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 45 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against a set of tests (called Unit Tests). These unit tests will
not be visible to you, but the Web-Cat server will inform you as to which tests
your code passed/failed. This grade component is proportional to the fraction
of tests that your code passes (so 22.5 points means that your code passed half
of the tests)

Style/Coding: 20 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points
This element will be assessed by a grader (typically sometime after the lab
deadline). Any errors in your program will be noted in the code stored on
the Web-Cat server, and two points will be deducted for each. Possible errors
include:
e Non-descriptive or inappropriate project- or method-level documentation

e Missing or inappropriate inline documentation

e Inappropriate choice of variable or method names

Inefficient implementation of an algorithm

Incorrect implementation of an algorithm

Incomplete coverage of your Unit Tests. We expect that your unit tests
will test all lines of your code

If you do not submit compiled Javadoc for your lab, 5 points will be deducted
from this part of your score.
Note that the grader may also give warnings or other feedback. Although
no points will be deducted, the issues should be addressed in future submis-
sions(where points may be deducted).

Bonus: up to 5 points
You will earn one bonus point for every two hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose ten points for every minute that your assignment is submitted
late.

