
Lab Exercise 6: Abstract Classes and Interfaces
CS 2334

September 29, 2016

Introduction

In this lab, you will experiment with using inheritance in Java through the use of
abstract classes and interfaces. Continuing the fantasy game theme of Lab 2, you
will implement a set of classes that represent an inventory of items of different types.
In addition, your implementation will facilitate the comparison of Item objects, even
when they are different types of items.

Learning Objectives

By the end of this laboratory exercise, you should be able to:

1. Create and extend abstract classes and methods

2. Use interfaces to define standard behavior across multiple classes

Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

1

Preparation

1. Import the existing lab6 implementation into your eclipse workspace:
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab6/lab6.zip

2

http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab6/lab6.zip

Representing an Inventory of Items

Below is the UML representation of a set of classes that represent the inventory
and various types of items. Your task will be to implement this set of classes and an
associated set of JUnit test procedures. Methods and classes where you are providing
an implementation are shown in bold.

ItemComparator
«interface»

Inventory

-items: ArrayList<Item>

+Inventory()
+addItem(item: Item): void
+sort () : void
+sort(comparator: I temComparator): void
+toString(): String

Consumable

-consumed: boolean
-spoiled: boolean

+Consumable(name: String, value: int,
 weight: double, spoiled: boolean)
+eat(): String
+use() : Str ing
+isConsumed(): boolean
+setConsumed(consumed: boolean): void
+isSpoiled(): boolean
+toString(): String

Bow

+Bow(baseDamage: double,
 baseDurability: double,
 value: int, weight: double)
+polish(): void

I temWeightComparator

+compare(first: Item, second: Item): int

Comparator<I tem>
«interface»

Pizza

-numberOfSlices: int
-slicesEaten: int

+Pizza(numberOfSlices: int, spoiled: boolean)
+eat(): String

Sword

+Sword(baseDamage: double,
 baseDurability: double,
 value: int, weight: double)
+polish(): void

Comparable
«Interface»

Weapon

+MODIFIER_CHANGE_RATE: double = 0.05
-baseDamage: double
-damageModifier: double
-baseDurability: double
-durabilityModifier: double

+Weapon(name: String, baseDamage: double,
 baseDurability: double,
 value: int, weight: double)
+polish(): void
+use(): String
+toString(): String
All Getters and Setters

I tem

-numberOfItems: int
-id: int
-value: int
-name: String
-weight: double

+Item(name: Str ing, value: int ,
 weight: double)
+use(): void
+compareTo() : int
+toStr ing() : Str ing
+getId(): int
+getValue(): int
+getName(): String
+getWeight(): double
+setValue(price: int): void
+setName(name: String): void
+setWeight(weight: double): void
+reset(): void

*

The classes in italics represent abstract classes or interfaces. The concrete child
classes must implement all methods from the abstract parent classes. In this lab,
Item, Consumable, and Weapon are the abstract classes.

The line from Item to Comparable indicates that Item must implement the
Comparable interface. Similarly, the ItemWeightComparator class must imple-
ment the ItemComparator interface, which extends the Comparator interface.
ItemWeightComparator compares items based on their weight.

3

Specific Steps

The Item class is the common ancestor to the various types of items that can exist
in this fantasy game.

� All instances of Item are given a unique int id. These are to be assigned by the
Item constructor. The first instance of an item is assigned an id of 0 (zero); the
next is assigned 1, etc. Note that you have available a class variable that will
help with the implementation of the constructor (and there is a static reset()
method that facilitates writing unit tests).

� compareTo(Item other): The Item class implements the Comparable inter-
face. This requires adding the compareTo(Item other) method to the class.
The compareTo(Item other) method takes in another instance of Item and
compares it to the current instance. If the current instance’s value field is
greater than other’s value field then the method should return a positive inte-
ger (convention is 1). If the current instance’s value field is less than other’s
value field then the method should return a negative integer (convention is
-1). If both items are equal, then compare the name field of the items lexico-
graphically (meaning, compare each character in the strings based on its value,
ignoring case. i.e. A == a), returning the appropriate value. Hint: you might
find something helpful for this in the API of the String class.

� Item.toString(): for an Item with the name of “ring”, a value of 3000, and
a weight of 0.013, the method must return a String in the following format
(excluding the quotes):

” r ing −− Value : 3000 , Weight : 0 .01 ”

The ItemWeightComparator class implements the ItemComparator inter-
face, meaning instances of it can be passed to methods requiring a comparator for
objects of type Item.

� The compare(Item first, Item second) method of ItemWeightComparator
should function similarly to the compareTo(Item other) method of the Item
class, but for the weight field of the Items. If the weights are equal, this
method should call the compareTo(Item other) method of the first Item and
return the resulting value.

4

The Weapon class is an abstract implementation of Item and describes items
that can deal damage and break from use. The implementation of this class is pro-
vided for you. All instances of Weapon have a base damage value baseDamage and
a modifier to that value damageModifier. The sum of these two values determines the
effective damage that this Weapon can do on a single use. In addition, Weapons
have a base durability value baseDurability, and a modifier to that value durabili-
tyModifier. The sum of these two values determines the effective durability of the
Weapon. When this sum reaches zero or less, the effective durability is zero and
the Weapon is considered to be broken and cannot be used.

We provide several implemented methods that include:

� Weapon.getDamage(): Returns the effective damage of the Weapon.

� Weapon.getDurability(): Returns the effective durability of the Weapon.

� Weapon.toString(): for a Weapon with the name of “hammer”, a value of 300,
a weight of 2.032, a baseDamage value of 30.4219, a damageModifier of 0.05, a
baseDurability of 0.7893, and a durabilityModifier of 0.05, the method returns
a String in the following format:

”hammer −− Value : 300 , Weight : 2 . 03 , Damage : 30 .47 , Durab i l i t y : 83.93%”

� Weapon.use(): This method returns a String describing what happens when a
Weapon is used. For a Weapon with the name of “hammer”, and an effective
damage of 30.4725, the method should return the following:

”You use the hammer , dea l i ng 30 .47 po in t s o f damage . ”

“Using” a Weapon lowers (subtracts) its effective durability by
Weapon.MODIFIER CHANGE RATE. If the effective durability of the Weapon
hits or drops below 0, the Weapon will ”break”. If the Weapon ”breaks”,
the method should output the previous String, but additionally with a newline
character and the additional text “The hammer breaks.”:

”You use the hammer , dea l i ng 34 .05 po in t s o f damage .
The hammer breaks . ”

For a Weapon with the name of “hammer”, if it is “broken” (The effective
durability is 0 or less), calling its use() method returns the following:

5

”You can ' t use the hammer , i t i s broken . ”

In this case, there is no change to durabilityModifier.

The Sword class is a concrete implementation of Weapon that you must provide.

� All instances of the Sword class have the name “sword”.

� Sword.polish(): This method increases the instance’s damageModifier by
adding Weapon.MODIFIER CHANGE RATE each time polish() is called, up
to 25% of the baseDamage value. If the base damage of a sword were to be
100, then the maximum that the effective damage could be increased to would
be 125.

The Bow class is a concrete implementation of Weapon that you must provide.

� All instances of the Bow class have the name “bow”.

� Bow.polish(): This method increases the instance’s durabilityModifier by
adding Weapon.MODIFIER CHANGE RATE. Any changes are capped such
that effective durability is no larger than one (1).

Much like in Lab 2, the Inventory class is a container for items in this fantasy
game. This class has been partially implemented already, but you will need to add
the following methods:

� Inventory.sort(): This sorts the items in the Inventory instance based on
their value.

� Inventory.sort(ItemComparator comparator): This sorts the items in the In-
ventory instance based on their weight.

The Consumable class describes those items that can be eaten by the player.
Consumables can be marked as consumed, and can be spoiled. These properties are
stored in the instance variables consumed and spoiled, respectively. A newly-created
Consumable object should have its consumed field set to false.

� Consumable.use(): If a Consumable is not spoiled and is not consumed,
calling this simply returns the value from a call to Consumable.eat(). For a
Consumable with the name of “bread” that has already been consumed, this
method returns the following:

6

”There i s nothing l e f t o f the bread to consume . ”

Assuming for this Consumable named “bread” that the value returned by a
call to its eat() method is the following:

”You eat the bread . ”

If this “bread” were to be spoiled, the method returns this String, appended
with a newline and the text “You feel sick.”

”You eat the bread .
You f e e l s i c k . ”

Lab 6: Specific Instructions

Start from the class files that are provided in lab6.zip.

1. Modify the Item, Consumable, and Inventory classes.

2. Create the Sword, Bow and ItemWeightComparator classes.

� Be sure that the class names are exactly as shown

� You must use the default package, meaning that the package field must
be left blank

3. Use a Driver class for quick tests, as needed

4. Create JUnit test classes for the methods that you have created or modified.

� You need to convince yourself that everything is working properly

� Make sure that you cover the methods in question while creating your
tests. Keep in mind that we have our own tests that we will use for
grading.

7

Final Steps

1. Generate Javadoc using Eclipse.

� Select Project/Generate Javadoc...

� Make sure that your project and all of its classes are selected.

� Select Private visibility

� Use the default destination folder

� Click Finish

2. Open the lab6/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that that both of your classes are listed and that all of your documented
methods have the necessary documentation.

3. If you complete the above instructions during lab, you may have your imple-
mentation checked by one of the TAs.

Submission Instructions

� All required components (source code and compiled documentation) are due
at 11:59pm on Friday, September 30th.

� Method 1: Submit through Eclipse

1. From the Window menu, select Preferences/Configured Assignment.

2. Select your project.

3. From the Project menu, select Submit Assignment.

4. Under Select the assignment to submit, select Lab 6: Lab 6: Abstract
Classes and Interfaces.

5. Click Change Username or Password.... Enter your Web-Cat username
and password. Click OK. You should only need to do this step once per
session.

6. Click Finish.

8

7. Your browser should automatically open a Web-Cat page that shows your
submission being graded. After a short wait, the page will show a report
of your submission. See the main class web page for a link that describes
the Web-Cat output.

� Method 2: Submit directly to the Web-Cat server

1. From the File menu, select Export.

2. Select Java/JAR File. Click Next.

3. Select and expand your project folder.

4. Select your src and doc folders.

5. Select Export Java source files and resources.

6. Select an export destination location (e.g., your Documents folder/direc-
tory). This file should end in .jar

7. Select Add directory entries.

8. Click Finish.

9. In your web browser, login to the Web-Cat server.

10. Click the Submit button.

11. Browse to your jar file.

12. Click the Upload Submission button.

13. The next page will give you a list of all files that you are uploading. If
you selected the correct jar file, then click the Confirm button.

14. Your browser will then open a Web-Cat page that shows your submission
being graded. After a short wait, the page will show a report of your
submission. See the main class web page for a link that describes the
Web-Cat output.

9

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 45 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against a set of tests (called Unit Tests). These unit tests will
not be visible to you, but the Web-Cat server will inform you as to which tests
your code passed/failed. This grade component is proportional to the fraction
of tests that your code passes (so 22.5 points means that your code passed half
of the tests)

Style/Coding: 20 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader (typically sometime after the lab
deadline). Any errors in your program will be noted in the code stored on
the Web-Cat server, and two points will be deducted for each. Possible errors
include:

� Non-descriptive or inappropriate project- or method-level documentation
(up to 10 points)

� Missing or inappropriate inline documentation (2 points per violation; up
to 10 points)

� Inappropriate choice of variable or method names (2 points per violation;
up to 10 points)

� Inefficient implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

� Incorrect implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

10

� Incomplete coverage of your Unit Tests. We expect that your unit tests
will test all lines of your code (up to 15 points)

If you do not submit compiled Javadoc for your lab, 5 points will be deducted
from this part of your score.

Note that the grader may also give warnings or other feedback. Although no
points will be deducted, the issues should be addressed in future submissions
(where points may be deducted).

Bonus: up to 5 points

You will earn one bonus point for every two hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose ten points for every minute that your assignment is submitted
late.

11

