
Lab Exercise 9
CS 2334

October 22, 2015

Introduction

In this lab, you will begin experimenting with Graphical User Interfaces (GUIs) in
Java. GUIs are defined as a hierarchical set of graphical components (hierarchy, here,
is in a has-a sense). At the top of hierarchy is a component that is a container of other
components – in our case, this component is a JFrame. Other components, such as
JButton, JLabel, JTextField, and JRadioButton, provide the individual pieces
of the GUI with which the user interacts. JPanel objects are components that also
act as containers for multiple components, giving us a convenient, logical way of
grouping different parts of the GUI together.

Your task for the lab is to create a GUI for a simple base conversion calculator.
The GUI will give the user a single text box in which to type an operand (value)
and a set of radio buttons for selecting the type of operator. After performing the
calculation, the GUI will display the result in a non-editable text field.

Learning Objectives

By the end of this laboratory exercise, you should be able to implement a simple
GUI by:

1. Creating a window

2. Adding various graphical components to the window

3. Responding to window events in a meaningful way

1

Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

Preparation

1. Import the existing lab9 implementation into your eclipse workspace.

(a) Download the lab9 implementation:
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab9/lab9-initial.zip

(b) In Eclipse, select File/Import

(c) Select General/Existing projects into workspace. Click Next

(d) Select Select archive file. Browse to the lab9.zip file. Click Finish

Number Representations

We are used to representing numbers in the decimal (or base 10) number system.
What we mean by this is that a single digit can take on one of ten values (0...9).
Furthermore, when we write the number: 237, we mean:

237 = 2 × 102 + 3 × 101 + 7 × 100. (1)

However, a number can be written in terms of any positive base. For example, in
the binary (base 2) number system, we only have two digits: 0 and 1. Then, when
we write 101, we mean:

101 = 1 × 22 + 0 × 21 + 1 × 20, (2)

which is equivalent to 5 in decimal.
The binary number system is important because it is fundamentally how we

represent all information inside of a digital computer. The downside to this repre-
sentation is that it is hard to keep track of so many digits. As a result, it is common
for us to use either octal (base 8) or hexadecimal (base 16) representations. In the
case of hexadecimal, we still use the digits 0...9. However, after 9, we need a single
digit to represent the next value. The standard is to use the letters a...f to capture
the values 10...15. For example, when we write 2bd, we mean:

2

http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab9/lab9-initial.zip

2bd = 2 × 162 + 11 × 161 + 13 × 160, (3)

which is equivalent to decimal 701.

Simple Base Conversion Calculator

Below is an illustration of the graphical user interface for the calculator that we are
creating. The user will enter a decimal number into the first text field. There are four
base conversions provided to user: binary, octal, decimal, and hexadecimal. When
the program is first started, the binary button should be selected.

When the user clicks on the button Translate, depending on the base selected by
the user, the answer should be displayed to the right of the “to XXXX” label, where
XXXX represents the user’s selected base.

In the following example, the user types the value 3501 into the input text field,
selects Hexadecimal and clicks Translate. The GUI then presents the result of con-
verting decimal 3501 into hexadecimal: dad. Note that the result uses lower case
letters.

3

Likewise, when Binary is selected and Translate is clicked, the GUI presents the
binary result: 110110101101.

Finally, the Octal result is: 6655.

If the user enters an invalid number or leaves the text field blank, and then clicks
Translate, then an error message should be displayed, just below the operand box.

4

When the user closes the window, the program should terminate.

GUI Organization

Our calculator is organized using a set of 4 horizontal rows, as shown below:

The rows, each encapsulated by a JPanel, contain the following information:

1. The operand, operator, and result

2. An error message (which can be blank)

3. A Translate button

4. A set of radio buttons for operator selection

Here, we have used a GridLayout of dimension 4×0 to organize the four JPanel
objects within the JFrame.

Use the following components in the design of your GUI:

� JFrame for the window

� JPanel for the sub-panels

� JButton for the button

� JTextField instances for providing an editable input text box and a non-
editable output text box

5

� JLabel instances for displaying the intended base conversion and the error
message

� ButtonGroup to tell the Java windowing system that only one operator but-
ton can be selected at any one time

� JRadioButton instances for the radio buttons

Lab 9: Specific Instructions

There is only one class file, CalculatorFrame.java, the skeleton of which is provided
in lab9.zip.

1. Modify the class according to the instructions given in the comments

� Within the CalculatorFrame class, there is only the constructor and the
main() method

� Be sure that the class name is exactly as given in the initial zip file

� You must use the default package, meaning that the package field must
be left blank

� Do not change the name for instance variables and method name

� Do not add functionality to the classes beyond what has been specified

� Don’t forget to document as you go!

2. Test your program by compiling and testing all possible inputs and conversions.

� Be sure all of the conversions are accurate

� Make sure that the error message appears when the user tries to translate
erroneous input

� You do not have any unit tests to write for this lab. All of your testing
will be done by interacting with the GUI. However, we will be testing your
code with a set of unit tests

6

Hints

� Remember that your class is-a JFrame. This means that it will provide all of
the methods that are made available by JFrame. This is why we call super()
in Calculator Frame constructor.

� Your constructor should create all of the GUI components, hook them together,
and attach the appropriate ActionListeners

� Your main function creates a single instance of CalculatorFrame and then
does nothing else

� All of your inner, anonymous classes can “see” the instance variables

� See the JRadioButton API documentation for information about how to ask
the radio button about whether it has been selected

� See the JLabel API documentation for information about how to change the
text contained within the label

� See the JTextField API documentation for information about making a text
field un-editable.

� There are many number conversion tools available on the web that you can use
to check your results

� Look carefully at Integer.toString() for something that will help with your
implementation.

Final Steps

1. Generate Javadoc using Eclipse.

� Select Project/Generate Javadoc...

� Make sure that your project is selected, as is the CalculatorFrame

� Select Private visibility

� Use the default destination folder

� Click Finish

7

2. Open the lab9/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that that all of your classes are listed and that all of your documented
methods have the necessary documentation.

3. If you complete the above instructions during lab, you may have your imple-
mentation checked by one of the TAs.

Submission Instructions

� All required components (source code and compiled documentation) are due
at 11:59pm on Friday, October 21st.

� Method 1: Submit through Eclipse

1. From the Window menu, select Preferences/Configured Assignment.

2. Select your project.

3. From the Project menu, select Submit Assignment.

4. Under Select the assignment to submit, select Lab 9: Lab 9: Graphical
User Interfaces.

5. Click Change Username or Password.... Enter your Web-Cat username
and password. Click OK. You should only need to do this step once per
session.

6. Click Finish.

7. Your browser should automatically open a Web-Cat page that shows your
submission being graded. After a short wait, the page will show a report
of your submission. See the main class web page for a link that describes
the Web-Cat output.

� Method 2: Submit directly to the Web-Cat server

1. From the File menu, select Export.

2. Select Java/JAR File. Click Next.

3. Select and expand your project folder.

4. Select your src and doc folders.

5. Select Export Java source files and resources.

8

6. Select an export destination location (e.g., your Documents folder/direc-
tory). This file should end in .jar

7. Select Add directory entries.

8. Click Finish.

9. In your web browser, login to the Web-Cat2 server.

10. Click the Submit button.

11. Browse to your jar file.

12. Click the Upload Submission button.

13. The next page will give you a list of all files that you are uploading. If
you selected the correct jar file, then click the Confirm button.

14. Your browser will then open a Web-Cat page that shows your submission
being graded. After a short wait, the page will show a report of your
submission. See the main class web page for a link that describes the
Web-Cat output.

9

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 45 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against a set of tests (called Unit Tests). NOTE: The tests
used for this lab will focus on button interactions and values inside textFields -
a style of testing different than what we have done before. These unit tests will
not be visible to you, but the Web-Cat server will inform you as to which tests
your code passed/failed. This grade component is proportional to the fraction
of tests that your code passes (so 22.5 points means that your code passed half
of the tests)

Style/Coding: 20 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader (typically sometime after the lab
deadline). Any errors in your program will be noted in the code stored on
the Web-Cat server, and two points will be deducted for each. Possible errors
include:

� Non-descriptive or inappropriate project- or method-level documentation
(up to 10 points)

� Missing or inappropriate inline documentation (2 points per violation; up
to 10 points)

� Inappropriate choice of variable or method names (2 points per violation;
up to 10 points)

� Inefficient implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

� Incorrect implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

10

� Incomplete coverage of your Unit Tests. We expect that your unit tests
will test all lines of your code (up to 15 points)

If you do not submit compiled Javadoc for your lab, 5 points will be deducted
from this part of your score.

Note that the grader may also give warnings or other feedback. Although no
points will be deducted, the issues should be addressed in future submissions
(where points may be deducted).

Bonus: up to 5 points

You will earn one bonus point for every two hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose ten points for every minute that your assignment is submitted
late.

11

