
CS 2334
Project 1: Reading Data from Files

September 7, 2016

Due: 1:29 pm on Sept 21, 2016

Introduction

The Oklahoma Mesonet1 is a network of weather observation stations that is unique
to the State of Oklahoma. This network provides a variety of weather observations for
every county in Oklahoma every five minutes. Having been in existence for 20 years,
it is an invaluable resource for understanding our weather and climate. The data for
our projects this semester will be derived from this set of observation stations.

For this project, you will focus on a single station (Tishimingo) and only wind
and solar radiation data. Later projects will expand to other stations and additional
weather data. The data that we provide to you is a comma separated file (CSV
format) with the daily summary information for Tishimingo.

We have provided several years of wind speed and solar radiation data for Tishimingo
and your job is to read in the data files, parse the data, create appropriate objects
from these data, and summarize the data using maximum, minimum, and average
mathematical functions. You will also continue to expand your use of unit tests be-
yond the lab and ensure that your parsing and mathematical functions are correct.
More details are below in the Project Components section.

Note: due to unforeseen circumstances, such as extended power outages or sensor
errors, sometimes the data is unavailable for a day at a particular station or for
individual sensors. These situations are represented in the files using values of −900
and below. Make sure you don’t accidentally use these values in your statistical
summaries.

1http://www.mesonet.org

1

http://www.mesonet.org

(a) Temperatures on August 27, 2014 (b) Rainfall for August, 2014

Figure 1: Example Mesonet Data

Learning Objectives

By the end of this project, you should be able to:

1. parse structured data from a file,

2. create objects using data parsed from a file,

3. use mathematical transformations on Strings,

4. implement mathematical functions in code,

5. employ unit testing to ensure that different pieces of your code are functioning
properly, and

6. provide proper documentation in Javadoc format.

Proper Academic Conduct

This project is to be done in the groups of two that we have assigned. You are to
work together to design the data structures and solution, and to implement and test
this design. Your group will turn in a single copy of your solution. Do not look at or
discuss solutions with anyone other than the instructor, TAs or your assigned team.
Do not copy or look at specific solutions from the net.

2

Strategies for Success

� We encourage you to work closely with your other team member, meeting in
person when possible.

� Start this project early, as it cannot be completed in a single day.

� Implement and test your project components incrementally. Don’t wait until
your entire implementation is done to start the testing process. We suggest
that you start with the lowest-level classes (Sample) and work your way up to
highest-level (DataMonth).

� Write your documentation as you go. Don’t wait until the end of the imple-
mentation process to add documentation. It is often a good strategy to write
your documentation before you begin your implementation.

Preparation

Import the existing project1 implementation into your eclipse workspace:

1. Download:
http://www.cs.ou.edu/~fagg/classes/cs2334/projects/project1/project1.zip

2. File menu: Import

3. Select General/Existing Projects into Workspace and then click Next

4. Select archive file: browse to the project1.zip file

5. Click Finish

6. Once you create the new project, it will not initially know where to find the
standard Java libraries (it varies depending on your configuration). In one of
the provided Java files, find an undefined reference to a standard class (e.g.,
String) and mouse over it. Java will provide a list of ways to repair the problem:

(a) Select Fix project setup

(b) Select Add library: JRE System Library

(c) Click OK

3

http://www.cs.ou.edu/~fagg/classes/cs2334/projects/project1/project1.zip

Project Design

As we begin to develop large programs, it becomes harder to keep all of the details
in your mind at once. A key skill for success in computer science is learning how to
chop big problems into small, manageable ones. In part, this involves the process
that you use to solve the problem (separating design from implementation and from
testing), but it also involves cutting the implementation into logical pieces that are
clearly independent and have simple interfaces between them. We first summarize
all of the key classes in the form of a UML diagram (next page), and then discuss
each class in detail.

4

UML Design

Driver

+main(args:String[]):void
 throws IOException,

DataMonth

-year:int
-month:int
-stationID:String
-days:ArrayList<DataDay>
-windSpeedMin:double
-windSpeedAverage:double
-windSpeedMax:double
-solarRadiationMin:double
-solarRadiationMax:double
-solarRadiationAverage:double
-solarRadiationTotal:double

+DataMonth(fileName:String)
 throws IOException
-computeSolarRadiationStats():void
-computeWindSpeedStats():void
+getYear(): int
+getMonth(): int
+getStationID():String
+getWindSpeedMin():double
+getWindSpeedAverage():double
+getWindSpeedMax():double
+getSolarRadiationMin():double
+getSolarRadiationAverage():double
+getSolarRadiationMax():double
+getSolarRadiationTotal():double
+toString():String

DataDay

-year:int
-month:int
-day:int
-stationID:String
-windSpeedMax:Sample
-windSpeedMin:Sample
-windSpeedAverage:Sample
-solarRadiation:Sample

+DataDay(year:int, month:int, day:int,
 stationID:String,
 solarRadiation:Sample,
 windSpeedMin:Sample,
 windSpeedAverage:Sample,
 windSpeedMax:Sample)
+toString():String
+getYear(): int
+getMonth(): int
+getDay(): int
+getStationID():String
+getSolarRadiation():Sample
+getWindSpeedMax():Sample
+getWindSpeedMin():Sample
+getWindSpeedAverage():Sample

Sample

-value:double
-valid:boolean

+Sample()
+Sample(value: double)
+getValue(): double
+isValid(): boolean
+toString(): String

*

*

*

5

Classes and Other Components

1. Use proper documentation and formatting (Javadoc and in-line documentation)

� This is important for debugging and for communication with your project
partner and your future, possibly sleep-deprived, self. You may re-use your
project code in future projects this semester, so don’t make it obfuscated

� Use the same documentation standards that we established for Lab 1

2. Create a class called Sample

� This immutable class contains a single sample value (a double called value)
and a Boolean flag (called valid). The flag indicates whether the sample
is valid

� The default constructor creates an invalid sample.

� A second constructor accepts a single double value. On construction, if
this value is valid (greater than −900), then the valid property is set to
true. Otherwise, this property is set to false. We expect that a user of
this class will only ask for the value of a Sample if the sample is known
to be valid

� This class contains a complete set of getters, using the standard names.
Note that there are no setters

� This class contains an appropriate toString() method that will return a
string containing the value if the sample is valid (with exactly 4 digits
after the decimal point) and “invalid” if the sample is not valid. Two
examples:

1 invalid

2 98.3480

3. Implement unit tests for the Sample class. These tests should cover all possible
cases

4. Create a class called DataDay that will hold the daily data for a station

� Examine one of the CSV files that we have provided in the project (see
the data folder)

6

� This immutable class contains instance variables for the year, month and
day (all ints that are named accordingly)

� This class contains a String for the station ID (called stationID)

� This class contains Samples for the maximum, minimum and average wind
speed, and for the total solar radiation (called windSpeedMax, windSpeed-
Min, windSpeedAverage, solarRadiation)

� This class contains a single constructor. The order of the arguments is
specified in the UML diagram

� This class must include an appropriate set of getters (using the standard
names)

� This class must contain an appropriate toString() method. An example
return value from this method is as follows:

2004−10−08, UPLAND : Wind = [0 . 1 0 00 , 13 .2300 , 2 6 . 8 930] , Solar Radiation = ←↩
15.5700

where the Wind values correspond to the minimum, average and maximum
values, respectively.

Note that the character at the right-hand-side (the arrow) only indicates a line
wrap in this document and is not included as part of the returned String

5. Implement unit tests for the DataDay class. These tests should cover your
entire class

6. Create a class called DataMonth that will represent an entire month of sam-
ples

� This immutable class will include an instance variable of type
ArrayList<DataDay> called days

� This class will also include instance variables (all doubles) called wind-
SpeedMax, windSpeedMin, windSpeedAverage, solarRadiationMax, solar-
RadiationMin, solarRadiationAverage and solarRadiationTotal

� This class will include instance variables that will represent the year and
month (both are ints), and stationID (a String)

� The only constructor will take as input the name of a file (a String), and
then will:

7

– Read in the data for the individual days and add these days to the
ArrayList. You must use a BufferedReader for this project.
We will cover details of this in Lab 3.

– Using a pair of private helper methods, this constructor will fill in the
minimum, maximum and average wind speed and solar radiation in-
stance variables, as well as the total solar radiation instance variable.
Make sure to ignore invalid values during the computation of these
statistics

� You may assume that each file contains at least one valid sample for each
measure and contains only one year and one month for a single station.
You may also assume that the CSV files are consistently formatted.

� This class must include the set of getters given in the UML diagram (using
the standard names)

� This class must contain an appropriate toString() method. An example
output from this method (for June, 2016) is as follows:

2016−06 , TISH : Wind = [0 . 0 0 00 , 6 .0417 , 2 3 . 7 100] , Solar Radiation = ←↩
[4 . 6 0 00 , 23 .3545 , 30 .7200 , 677 . 2800]

where the Wind values correspond to the minimum, average and maximum
values, respectively, and where the Solar Radiation values correspond to
the minimum, average, maximum and total, respectively.

7. Implement unit tests for the DataMonth class.

� Make a file with data that you know is correct (just use a small number of
days) and verify that the max/min/averages/total are computed properly

8. Create a class called Driver that contains your main method. This Driver
will:

� Create a DataMonth instance from a specified data file (this file name
may be “hard coded”)

� Report the String from the month’s toString() method

8

Final Steps

1. Generate Javadoc using Eclipse for all of your classes.

2. Open the project1/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that all of your classes are listed (four primary classes plus three Junit
test classes) and that all of your methods have the necessary documentation

Submission Instructions

� All required components (source code and compiled documentation) are due
at 1:29 pm on Wednesday, September 21st (i.e, before class begins)

� Submit your project to Web-Cat using one of the two procedures documented
in the Lab 2 specification. As we get closer to the deadline, we will tell you
which Web-Cat server to use

Grading: Code Review

All groups must attend a code review session in order to receive a grade for your
project. The procedure is as follows:

� Submit your project for grading to the Web-Cat server.

� Any time following the submission, you may do the code review with the in-
structor or one of the TAs. For this, you have two options:

1. Schedule a 15-minute time slot in which to do the code review. We will
use Doodle to schedule these (a link will be posted on Canvas). You
must attend the code review during your scheduled time. Failure to do
so will leave you only with option 2 (no rescheduling of code reviews is
permitted). Note that schedule code review time may not be used for
help with a lab or a project

2. “Walk-in” during an unscheduled office hour time. However, priority will
be given to those needing assistance in the labs and project

� Both group members must be present for the code review

9

� During the code review, we will discuss all aspects of the rubric, including:

1. The results of the tests that we have executed against your code

2. The documentation that has been provided (all three levels of documen-
tation will be examined)

3. The implementation. Note that both group members must be able to
answer questions about the entire solution that the group has produced

� If you complete your code review before the deadline, you have the option of
going back to make changes and resubmitting (by the deadline). If you do this,
you may need to return for another code review, as determined by the grader
conducting the current code review

� The code review must be completed by Wednesday, September 28th to receive
credit for the project

Notes

Some classes/methods will raise one or more of the following exceptions: IOExcep-
tion, NumberFormatException, FileNotFoundException. It is OK in this project if
you deal with this by having your methods throw these exceptions, as well. Note
that multiple methods will need to do this, including your main() method (Eclipse
will tell you where to do this). Later in the semester, we will cover the details of
Exceptions.

The largest value that can be represented by a double is Double.POSITIVE INFINITY,
and the most negative value is Double.NEGATIVE INFINITY.

In our UML diagram, we are being very prescriptive of the required object prop-
erties and methods (and their visibility). Do not alter this design.

Testing: the different “@test” methods will be executed in an arbitrary order
(don’t assume the implementation order). In some cases, however, you may wish to
execute a method first that creates or loads in a data structure that is then used by
multiple test methods.

1. Declare the shared data structure elements as static class variables of the test
class

2. Initialize these data structures using a method that is declared as
“@BeforeClass”. Remember that you will need to import the BeforeClass class

10

(Eclipse will give you the right option if you mouse over the undefined Before-
Class reference.

References

� The Java API: https://docs.oracle.com/javase/8/docs/api/

� The Oklahoma Mesonet: http://www.mesonet.org

� The API of the Assert class can be found at:
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

� JUnit tutorial in Eclipse:
https://dzone.com/articles/junit-tutorial-beginners

11

https://docs.oracle.com/javase/8/docs/api/
http://www.mesonet.org
http://junit.sourceforge.net/javadoc/org/junit/Assert.html
https://dzone.com/articles/junit-tutorial-beginners

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 45 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against our set of tests. These unit tests will not be visible to
you, but the Web-Cat server will inform you as to how many tests your code
passed/failed. This grade component is proportional to the fraction of tests
that your code passes (so 22.5 points means that your code passed half of the
tests).

Style/Coding: 20 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader during the code review. Any errors
in your program will be noted in the code stored on the Web-Cat server, and
two points will be deducted for each. Possible errors include:

� Non-descriptive or inappropriate project- or method-level documentation

� Missing or inappropriate inline documentation

� Inappropriate choice of variable or method names

� Inefficient implementation of an algorithm

� Incorrect implementation of an algorithm

� Incomplete coverage of your Unit Tests. We expect that your unit tests
will test all lines of your code

If you do not submit compiled Javadoc for your project, 5 points will be de-
ducted from this part of your score.

Note that the grader may also give warnings or other feedback. Although
no points will be deducted, the issues should be addressed in future submis-
sions(where points may be deducted).

12

Bonus: up to 5 points

You will earn one bonus point for every twelve hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose five points for every twelve hours that your assignment is sub-
mitted late (up to 48 hours). Submissions will not be accepted more than 48
hours after the deadline.

13

