
CS 2334
Project 3: Java Collections Framework

October 12, 2016

Due: 1:29 pm on Wednesday, October 26, 2016

Introduction

For the last two projects, you have been using data that are well-structured. In par-
ticular, you could assume ahead of time that you knew which stations were included
in the data set and, for each station, you could assume that you knew which data
elements were being recorded. In this project, we will break both of these assump-
tions. At run time, your program will load a pair of configuration files that will
inform it of 1) the set of stations that are included in the data set, and 2) the set of
measurements that are made at each station. Given this information, your program
will create the data structures necessary to load in the data for the set of stations
and to compute statistics over the individual measurements.

Specifically, your final product will:

1. Load in a pair of configuration files that describe the set of measures taken
(the variables) at the stations, and the set of stations

2. Load in one or more year data files (each data file contains information about
all of the stations)

3. Report the minimum, maximum and average of specified statistics for specific
stations

1

Learning Objectives

By the end of this project, you should be able to:

1. Make use of HashMaps and TreeMaps to flexibly store data in a structure
that is efficient to access

2. Compute statistics over the stored data in a manner that does not rely on a
priori knowledge of the specifics of the data

3. Continue to exercise good coding practices for Javadoc and for unit testing

Proper Academic Conduct

This project is to be done in the groups of two that we have assigned. You are to
work together to design the data structures and solution, and to implement and test
this design. You will turn in a single copy of your solution. Do not look at or discuss
solutions with anyone other than the instructor, TAs or your assigned team. Do not
copy or look at specific solutions from the net.

Strategies for Success

� The UML specification constitutes the interface that we will rely on during our
testing. Do not make changes to this interface.

� When you are implementing a class or a method, focus on just what that
class/method should be doing. Try your best to put the larger problem out of
your mind.

� We encourage you to work closely with your other team member, meeting in
person when possible.

� Start this project early. In most cases, it cannot be completed in a day or two.

� Implement and test your project components incrementally. Don’t wait until
your entire implementation is done to start the testing process.

� Write your documentation as you go. Don’t wait until the end of the imple-
mentation process to add documentation. It is often a good strategy to write
your documentation before you begin your implementation.

2

Preparation

Copy your project 2 implementation into a new project3 project.
Import the data for project3 into your workspace:

http://www.cs.ou.edu/~fagg/classes/cs2334/projects/project3/project3-data.zip

Example Output

Below are several examples of output generated by our program (using the
Driver.reportStation() method. Your implementation should behave in a similar way.
Keep in mind that we will be testing many other cases when we evaluate your code.

For the 2015 data file and the Tishomingo station, the ATOT, WSMX, WSPD
and WSMN variables report the following Max, Avg and Min values. Note that for
WSMN, we are indeed computing the Min, Max and average

Station : TISH , Tishomingo , Tishomingo

ATOT , Total Solar Radiation (mega Joules per square meter)
Max : 2015−06−09, TISH : 30 .3500
Avg : 15 .7975
Min : 2015−12−27, TISH : 0 .4000
WSMX , Maximum Wind Speed (miles per hour)
Max : 2015−12−27, TISH : 40 .5300
Avg : 16 .4307
Min : 2015−06−09, TISH : 6 .9100
WSPD , Average Wind Speed (miles per hour)
Max : 2015−12−27, TISH : 25 .5100
Avg : 7 .8934
Min : 2015−03−22, TISH : 3 .0100
WSMN , Minimum Wind Speed (miles per hour)
Max : 2015−12−27, TISH : 11 .7300
Avg : 1 .6287
Min : 2015−01−13, TISH : 0 .0000

Note that while these values are correct, the form of this particular String output
will not be tested in our unit tests.

3

http://www.cs.ou.edu/~fagg/classes/cs2334/projects/project3/project3-data.zip

For the 2013, 2014 and 2015 data files, the Fittstown station reports the following
summary statistics:

Station : FITT , Fittstown , Fittstown

ATOT , Total Solar Radiation (mega Joules per square meter)
Max : 2013−06−07, FITT : 31 .4000
Avg : 16 .1567
Min : 2015−12−27, FITT : 0 .3600
WSMX , Maximum Wind Speed (miles per hour)
Max : 2013−05−29, FITT : 41 .0300
Avg : 18 .2879
Min : 2013−02−05, FITT : 6 .7300
WSPD , Average Wind Speed (miles per hour)
Max : 2014−04−13, FITT : 21 .6000
Avg : 9 .8574
Min : 2015−01−01, FITT : 2 .9900
WSMN , Minimum Wind Speed (miles per hour)
Max : 2013−04−08, FITT : 13 .2700
Avg : 3 .0825
Min : 2013−01−18, FITT : 0 .0000

Class Design

Because your program will not know at compile time what the set of variables will be,
we must fundamentally change the way that we are representing the data Samples.
Specifically, variables will be identified using a String variableId. These IDs will
then be used to look-up the associated Sample value, as well compute the minimum,
maximum and average of the variable. Likewise, your program will not know ahead
of time what the set of stations will be. This set will be loaded at run time.

4

Below is a complete UML diagram for our key classes.

I terable<Integer>
«interface»

StatisticsAbstract

+getStatisticMinDay(String statisticId): DataDay
+getStatisticAverage(String statisticId): Sample
+getStatisticMaxDay(String statisticId): DataDay

StationDefinitionList

-stationMap: HashMap<String, StationDefinition>

+StationDefinitionList(String fileName)
+getStationInfo(String stationId): StationDefinition
+toString(): String
-addDay(DataDay day): void
+loadData(String fileName): void
+getStationIds(): ArrayList<String>
+getStatisticAverage(String stationId, String variableId): Sample
+getStatisticMaxDay(String stationId, String variableId): DataDay
+getStatisticMinDay(String stationId, String variableId): DataDay

StationDefinition

-stationId: String
-name: String
-city: String
-nlat: double
-elon: double
-dataSet: DataSet

+StationDefinition(String stationId, String name,
 String city, double nlat, double elon)
#addDay(DataDay day): void
+getStationId(): String
+getName(): String
+getCity(): String
+getNlat(): double
+getElon(): double
+getStatisticAverage(String statisticId): Sample
+getStatisticMaxDay(String statisticId): DataDay
+getStatisticMinDay(String statisticId): DataDay
+toString(): String
+getStructure(): String

Sample

-value: double
-valid: boolean

+Sample()
+Sample(double value):
+getValue(): double
+isValid(): boolean
+isLessThan(Sample s): boolean
+isGreaterThan(Sample s): boolean
+toString(): String

MultiStatisticsAbstract

#getItem(Integer key): StatisticsAbstract
+getStatisticMinDay(String statisticId): DataDay
+getStatisticMaxDay(String statisticId): DataDay
+getStatisticAverage(String statisticId): Sample
#addDay(DataDay day): void

Driver

+reportVariable(StationDefinition station,
 DataDefinitionList dataDefinitionList,
 String variableId): void

+reportStation(StationDefinitionList list,
 DataDefinitionList dataDefinitionList,
 String stationId): void

+main(String[] args): void

DataYear

-months: TreeMap<Integer, DataMonth>
-year: int
-stationID: String

+DataYear()
#addDay(DataDay day): void
#getItem(Integer month): DataMonth
+toString(): String
+iterator(): I terator<Integer>
+getStructure(): String

DataSet

-years: TreeMap<Integer, DataYear>
-stationId: String

+DataSet()
#getItem(Integer year): DataYear
#addDay(DataDay d): void
+toString(): String
+iterator(): I terator<Integer>
+getStructure(): String

DataMonth

-days: TreeMap<Integer, DataDay>
-month: int
-year: int
-stationID: String

+DataMonth()
#addDay(DataDay day): void
#getItem(Integer day): DataDay
+toString(): String
+iterator(): I terator<Integer>
+getStructure(): String

DataDefinitionList

-dataInfoMap: HashMap<String, DataDefinition>

+DataDefinitionList(String fileName)
+getVariableIds(): ArrayList<String>
+isValidStat(String variableId): boolean
+getDataInfo(String variableId): DataDefinition
+toString(): String

DataDefinition

-variableName: String
-variableId: String
-unit: String
-positive: boolean
-description: String

+DataDefinition(String variableName,
 String id, String unit, boolean positive,
 String description)
+getVariableName(): String
+getVariableId(): String
+getUnit(): String
+isPositive(): boolean
+getDescription(): String
+toString(): String

DataDay

-year: int
-month: int
-day: int
-stationID: String
-samples: HashMap<String, Sample>
-dataDefinitionList: DataDefinitionList
-dataFields: ArrayList<String>
-yearIndex: int
-monthIndex: int
-dayIndex: int
-stationIDIndex: int

+DataDay(String[] args)
+DataDay()
+getStatisticMinDay(String statisticId): DataDay
+getStatisticMaxDay(String statisticId): DataDay
+getStatisticAverage(String statisticId): Sample
+getYear(): int
+getMonth(): int
+getDay(): int
+getStationID(): String
+toString(): String
+setDataDefinitionList(DataDefinitionList dataDefinitions): void
+setDataFields(String[] dataFieldList): void

1
*

*

1

*

1 2

*

*

Implementation notes:

� The DataDefinition class will represent the information about a single vari-
able, including its name, ID, a text description and the variable’s units, and
whether the variable encodes information positively or negatively (the latter is
a Boolean). The toString() method should return information in the form of:

<ID>, <name> (<units>)

Note that there is no newline character at the end of this String.

� The DataDefinitionList class will represent all of the possible variables that
are stored for a single station. The constructor will load a configuration file

5

(DataTranslation.csv); each line of this file encodes a single variable. The
class’ HashMap structure allows for a quick translation between the variableId
and the corresponding DataDefinition object. The toString() method should
return a multi-line String that contains one DataDefinition String per line.
Note that there should be a trailing newline at the end of the String, but the
order of the individual lines is arbitrary.

� The StationDefinition class will represent the information about a station,
including its ID, name and location (longitude and latitude), as well as a text
description of the station (the city that it is located in).

A single StationDefinition object has exactly one DataSet. The addDay()
method is responsible for inserting a given day into this DataSet.

� The StationDefinitionList class will represent the information about all of
the stations using a HashMap. The constructor will load a configuration file
(geoinfo.csv); each line of this file encodes one station. You may safely ignore
the datc and datd columns of this file.

This class provides a helper addDay() method that should be used by the
loadData() method. This method is responsible for adding a given day to the
appropriate station.

� Many classes implement an addDay(DataDay day) method. In all cases, this is
about adding a new day to the data structure. In each class, the method must
decide how to handle this day. For the case of a YearlyData object, it must
decide which month to add the day to and then add the day to that month.

� Many classes implement a getStatisticAverage(String variableId) method that
returns a Sample. The MultiStatisticsAbstract class provides this imple-
mentation for all of its children. The remaining classes (DataDay, Station-
Definition and StationDefinitionList) each provide their own implementa-
tions.

� getStatisticMinDay() and getStatisticMaxDay() behave the same way that Av-
erage does.

� The MultiStatisticAbstract child classes all represent their sub-objects us-
ing a TreeMap. Keys for the TreeMap are Integers (e.g., corresponding to
the year in the case of a DataSet object, the month in the case of a Year
object). We use TreeMap because we want to preserve the order of the keys

6

when we perform searches for the minimum and maximum values of a variable.
Furthermore, the Map allows us to use meaningful keys (e.g., the actual years).

� The subclasses of MultiStatisticsAbstract will each implement
Iterable<Integer>, enabling MSA to access an Iterator over the subclass’
keys. This iterator must produce the keys in numerical order. Hint: look
carefully at the TreeMap API.

� The DataDay class will no longer explicitly represent variables for every pos-
sible Sample type. Instead, this class will use a HashMap to map a variableId
to an instance of a Sample for that variable.

� The DataDay class is informed of the DataDefinitionList and the set of
field names through a pair of static methods (setDataDefinitionList() and set-
DataFields(). The latter stores the list of field names contained at the top of
a data file. In addition, this latter method sets the yearIndex, monthIndex,
dayIndex and stationIdIndex class variables.

� The DataDay constructor will use the DataDefinitionList to determine
which fields correspond to proper variables that must be represented as Sam-
ples.

� Any class that extends the MultiStatisticsAbstract class will not explicitly
represent specific variables. Instead, the variableId will be used to query value
of the variable and to compute the minimum, maximum and average of the
variable.

� DataSet will contain all of the years associated with a specific station.

� The toString() method DataSet should return a String that encodes the sta-
tionId:

Data Set : stationId

The toString() methods for Days, Months and Years should return a String
that encodes the date and the stationId:

YYYY−MM−DD , stationId

7

where MM and DD are dropped if the month and day values are not contained
in the object.

Note that there is no trailing newline character for any of these toString()
methods.

� The getStructure() methods should return a String that describes the entire
contents of the object (this is useful for debugging). DataSet.getStructure()
will have the format:

TS\n

where TS is the String returned by DataSet.toString(). Appended to this String
is the set of Strings for each of the component DataYear.getStructure() methods
(in year order).

Year will have the format:

\tYear : TS\n

where TS is the String returned by DataYear.toString(). This line will be fol-
lowed by a set of Strings containing the Strings returned by Month.getStructure().
Each of these will have the following format:

\t\tMonth : TS\n

where TS is the String returned by DataMonth.toString(). This line will be
followed by a set of Strings (one for each day) of the format:

\t\t\tTS\n

where TS is the String returned by DataDay.toString().

getStructure() is for your testing purposes only (it is useful to visually confirm
that your data structure is being loaded correctly). We will not perform unit
tests on the output of this method.

8

Project Checklist

Start your project 3 implementation from your project 2. Modify or add classes as
follows:

1. Implement your DataDefinition and DataDefinitionList classes. Use the
DataTranslation.csv file as a guide to how these should be implemented.

2. Implement the DataDefinitionListTest class.

3. Implement your StationDefinition and StationDefinitionList classes. Use
the geoinfo.csv file as a guide to how these should be implemented.

4. Implement the StationDefinitionListTest class.

5. Update your StatisticsAbstract class according to the UML.

6. Update your DataDay implementation to match the requirements of the UML.

7. Update your DataDayTest class to test the new implementation of the class.

8. Update the MultiStatisticsAbstract to match the UML specification.

9. Modify your classes called DataMonth, DataYear and DataSet classes.

10. Create a unit test that loads the variable list, station list and data, then care-
fully tests the minimum, maximum and average statistics computations for
multiple stations and variables.

11. Your Driver.main() method will only be used for testing purposes only. This
method should load the configuration files, one or more data files and print a
set of useful Strings.

Assumptions

You may make the following simplifying assumptions:

1. All stations in the data set will be included in the geoinfo.csv file. The columns
in this file are pre-defined (i.e., they won’t change).

2. All files exist and are properly-formatted csv files.

9

3. The data file will include the following columns: YEAR, MONTH, DAY, STID.
However, they may occur at any column.

4. All variable values in the data set file can be interpreted as doubles.

Notes

1. The first line of the data file determines the names of each of the fields in
this file (each column is a field). While most of these columns are variables
that are measured by the stations, not all are. In your DataDay constructor,
you should only include Samples for fields that correspond to variables, as
determined by the isValidStat() method.

2. The Boolean class provides methods for parsing Boolean values from text.

10

Final Steps

1. Generate Javadoc using Eclipse for all of your classes.

2. Open the project3/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to
make sure that all of your classes are listed (five primary classes plus four JU-
nit test classes) and that all of your documented methods have the necessary
documentation.

Submission Instructions

� All required components (source code and compiled documentation) are due
at 1:29 pm on Wednesday, October 26 (i.e, before class begins)

� Submit your project to Web-Cat using one of the two procedures documented
in the Lab 2 specification.

Grading: Code Review

All groups must attend a code review session in order to receive a grade for your
project. The procedure is as follows:

� Submit your project for grading to the Web-Cat server.

� Any time following the submission, you may do the code review with the in-
structor or one of the TAs. For this, you have two options:

1. Schedule a 15-minute time slot in which to do the code review. We will
use Doodle to schedule these (a link will be posted on Canvas). You
must attend the code review during your scheduled time. Failure to do
so will leave you only with option 2 (no rescheduling of code reviews is
permitted). Note that schedule code review time may not be used for
help with a lab or a project

2. “Walk-in” during an unscheduled office hour time. However, priority will
be given to those needing assistance in the labs and project

� Both group members must be present for the code review

11

� During the code review, we will discuss all aspects of the rubric, including:

1. The results of the tests that we have executed against your code

2. The documentation that has been provided (all three levels of documen-
tation will be examined)

3. The implementation. Note that both group members must be able to
answer questions about the entire solution that the group has produced

� If you complete your code review before the deadline, you have the option of
going back to make changes and resubmitting (by the deadline). If you do this,
you may need to return for another code review, as determined by the grader
conducting the current code review

� The code review must be completed by Wednesday, October 19th to receive
credit for the project

Notes

� There are multiple ways to define the average wind speed over a year. For this
project, we will define a year’s average as the average over the months that
belong to that year.

� Remember that arrays are zero-indexed and months are one-indexed.

References

� The Java API: https://docs.oracle.com/javase/8/docs/api/

� The Oklahoma Mesonet: http://www.mesonet.org

� The API of the Assert class can be found at:
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

� JUnit tutorial in Eclipse:
https://dzone.com/articles/junit-tutorial-beginners

12

https://docs.oracle.com/javase/8/docs/api/
http://www.mesonet.org
http://junit.sourceforge.net/javadoc/org/junit/Assert.html
https://dzone.com/articles/junit-tutorial-beginners

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 45 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against our set of tests. These unit tests will not be visible to
you, but the Web-Cat server will inform you as to how many tests your code
passed/failed. This grade component is proportional to the fraction of tests
that your code passes (so 22.5 points means that your code passed half of the
tests).

Style/Coding: 20 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader during the code review. Any errors
in your program will be noted in the code stored on the Web-Cat server, and
two points will be deducted for each. Possible errors include:

� Non-descriptive or inappropriate project- or method-level documentation

� Missing or inappropriate inline documentation

� Inappropriate choice of variable or method names

� Inefficient implementation of an algorithm

� Incorrect implementation of an algorithm

� Incomplete coverage of your Unit Tests. We expect that your unit tests
will test all lines of your code

If you do not submit compiled Javadoc for your project, 5 points will be de-
ducted from this part of your score.

Note that the grader may also give warnings or other feedback. Although
no points will be deducted, the issues should be addressed in future submis-
sions(where points may be deducted).

13

Bonus: up to 5 points

You will earn one bonus point for every twelve hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose five points for every twelve hours that your assignment is sub-
mitted late (up to 48 hours). Submissions will not be accepted more than 48
hours after the deadline.

14

