Lab Exercise 10
Java Graphics
CS 2334

October 26, 2017

Introduction

This lab will give you experience with creating graphics in Java. A knowledge of using
graphics will allow you to customize your GUI with shapes and colors. Combined
with what you have already learned about graphical components (JButton, JLabel,
JTextField, etc.), there are infinite possibilities!

Your specific task for this lab is to put together a set of shapes that will create
the image of Batman.

Learning Objectives

By the end of this laboratory exercise, you should be able to demonstrate a knowledge
of graphics by:

1. Creating a window
2. Adding various graphical components to the window

3. Customizing the size, location, and color of those components to form an or-
ganized image

Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

Preparation

1. Import the existing lab10 implementation into your eclipse workspace.

(a) Download the lab10 implementation:
http://www.cs.ou.edu/~fagg/classes/cs2334/1labs/1lab10/1ab10.zip

(b) In Eclipse, select File/Import
(c) Select General/Ezisting projects into workspace. Click Next
(d) Select Select archive file. Browse to the lab10.zip file. Click Finish

http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab10/lab10.zip

Image

Below is the illustration that you will be mimicking.

The Batman

This is only an image and does not provide any way for a user to interact with
your program (other than closing the window).

Specifically, the picture shown is made up of the following components:

e 4 instances of Circle or Oval for the head, face, and eyes

2 instances of Circle for the light of the bat-signal (upper right of the picture)

3 instances of Triangle for the cowl (the ears and the nose)

3 instances of Triangle for the bat-signal

1 instance of Triangle for the body

4 instances of Diamond for the bat-signal wings
e 2 instances of Rectangle for the sky and ground

You do not need to worry about matching the exact locations shown in the
example picture — you are allowed to use a small amount of creativity in your choice
of sizes and colors. However, each of the shapes must be represented, your final

product must closely resemble ours, and your tests must cover your code. Be aware
that some of these shapes do overlap, so the order in which you add them to the
panel is important (e.g., the mouth is constructed by a black triangle sitting over
a yellow ellipse). You will not receive credit for a shape that is technically in the
panel, but is not visible.

The image also contains a mixture of filled and unfilled objects. This is necessary
in order to properly cover all of your code.

UML

DrawFrame
- drawPanel:DrawPanel >
+ DrawFrame(title:String)

+ main(args:Strin void

0

DrawPanel

- shapeList:ArrayList<Shape> o spanel |

+ addShape(shape:Shape):void
paintComponent(g:Graphics):void

}

Shape
location:Point[]
- color:Color Drawable

java.awt.Point |— —>{- filled:boolean 7T TTTT «Interface»
+ Shape(color:Color, filled:boolean)

+ draw(g:Graphics):void
+ getColor(): Color

17 + isFilled(): boolean
+ getLocation(): Point[]

Polygon

+ Polygon(color:Color, filled:boolean)
+ draw(g:Graphics):void
- diameterl:int

- diameter2:int
+ Oval(pointUL:Point, diameterl:int,
diameter2:int, color:Color, filled:boolean)

Oval

+
+ g:tg::z:ggg ::: Rectangle Triangle Diamond
+ draw(g:Graphics):void + Rectangle(pointUL:Point, width:int, + Triangle(pointB:Point, base:int, + Diamond(leftCorner:Point, edgeLength:int,

T height:int, color:Color, filled:boolean) height:int, color:Color, filled:boolean) color:Color, filled:boolean)

Circle Zr
- n - Square
+ Circle(pointUL:Point, diameter:int, —
color:Color, filled:boolean) + Square(pointUL:Point, width:int,

+ getDiameter():int color:Color, filled:boolean)

Lab 10: Specific Instructions

Most of the classes shown in the UML are provided in lab10.zip. Implementations
are provided in full for the Circle, Diamond, Polygon and ShapeUtils. Create
and/or complete the other classes and interfaces. Write JUnit tests for all the shape
classes. Partial test implementations have been provided for some shapes; complete

those tests classes and/or create the rest.

1. Make sure that in your final implementation, all variables and methods shown
in the UML are included and implemented in these classes

e Be sure that the class name and access keywords are the same as shown
in the UML diagram.

e You must use the default package, meaning that the package field must
be left blank.

e Do not change the variable and method names provided.

e You are responsible for making sure all method documentation is com-
plete.

2. Create the interface Drawable and the abstract class Shape.

3. Modify the code according to the TODO instructions given in the comments
and update and/or include Javadoc comments as needed. These classes are:
Drawframe, Oval, Rectangle, Square and Triangle.

4. Implement JUnit tests to check the non-drawing aspects of all the Shape classes.
For example, creating a Circle instance should result in an object with the
correct radii and color. You can use the ShapeUtils class to assist with your
tests. See the DiamondTest class for examples.

5. On Web-Cat, we will not test the main method of your DrawFrame class
(or its coverage). However, we will test the constructor, which generates your
picture. Note that the DrawFrameTest class does not need to be altered and
will help you ensure that the image you created tests all of the possible shapes.

6. DO NOT modify the ShapeUtils class.

DrawFrame

This class extends from JFrame and is the window that holds all of the drawn com-
ponents. This class is also the main entry point for the program and where you will
draw The Batman.

e The constructor takes a String for the title of the window. This method is
where you will be creating and adding shapes to draw Batman. You will need
to add these shapes into the frame’s DrawPanel in order for them to be drawn.

DrawPanel

This class extends from JPanel, maintains a list of all the shapes, and then draws
each of them.

addShape(Shape shape): This method adds shapes the list of shapes.

paintComponent(Graphics graphics): This method takes a Graphics object
and uses it to draw the Shapes into this component. This method uses the
Shapes’ draw() methods to do this appropriately. Note: you will not explicitly
call this method, as it is invoked by Java’s painting subsystem whenever a
component needs to be rendered.

Drawable

This is an interface for drawing objects.

You will need to create this interface.

draw(Graphics graphics): This method defines how to draw the object, and
takes a Graphics object to use for drawing.

Shape

This class holds the location and color of the shape, as well as whether the shape is
filled, and implements Drawable.

You will need to create this abstract class.

The constructor takes a color object (as a java.awt.Color), and a boolean
determining whether the shape should be drawn filled.

getColor(): Retrieve the shape’s color

isFilled(): Returns true if the space occupied by the shape is to be filled by
the color, false otherwise

The location instance variable is used to store the Points that are necessary
to represent the Shape. The number of Points that are represented depends
on the type of Shape

getLocation(): Returns a Point array that contains all the points used to define
the shape

Oval

This class maintains information for drawing an Oval, defines how ovals are drawn,
and extends Shape.

e The constructor takes a single Point for the upper left corner of the bounding
box that the oval resides in, the first diameter (from left to right) and the
second diameter (from top to bottom) as an integer, a Color object, and a
boolean determining whether the shape should be filled in.

e getDiameterl(): Returns the first diameter (from left to right)
e getDiameter2(): Returns the second diameter (from top to bottom)

e draw(Graphics graphics): This method takes a Graphics object to perform the
drawing, and places the oval at its location and fills it with the color if filled is
true.

Circle

This class maintains information for drawing a Circle, and extends Oval.

e The constructor takes a single Point for the upper left corner of the bounding
box that the circle resides in, the diameter as an integer, a color object, and a
boolean determining if the shape should be filled in.

e getDiameter(): Returns the diameter of the circle

Polygon

This abstract class maintains information for drawing a Polygon, defines how to draw
them, and extends Shape.

e The constructor takes a color object, and a boolean determining whether the
shape should be filled in.

e draw(Graphics graphics): This method takes a graphics object to perform the
drawing, places a polygon with the set of points defining its location and fills
it with the color if filled is true.

e The vertices that define a polygon are stored in the location instance variables.

7

Diamond

This class maintains information for drawing a Diamond and extends Polygon.

e The constructor takes a point for the leftmost vertex, an integer for the edge
length, a color object, and a boolean determining whether the shape should be
filled in.

e The Diamond object explicitly represents all four vertices.

Triangle

This class maintains information for drawing a Triangle and extends Polygon.

e Only isosceles triangles are represented, in which the base of the triangle is
horizontal.

e The constructor takes as input a single Point that corresponds to the non-
right angle vertex, integers for the height and base width, a Color object, and
a boolean determining whether the shape should be filled.

e The given point and the base length and height used to determine the other
two points of the triangle. Specifically, if the specified width is positive, then
the second vertex is placed to the right of the first Point. If the width is
negative, then the second vertex is placed to the left. Likewise, if the specified
height is positive, then the third vertex is placed below the base. If the height
is negative, then the third vertex is placed above the base.

Rectangle

This class maintains information for drawing a Rectangle and extends Polygon.

e The constructor takes a single Point for the upper left corner, integers for the
width and height, a Color object, and a boolean determining whether the shape
should be filled in. The point for the upper left corner is used to determine
and initialize the other points of the rectangle.

e This class explicitly represents all four vertices.

Square

This class maintains information for drawing a Square, and extends Rectangle.

e The constructor takes a point for the upper left corner, an integer for the edge
length, a color object, and a boolean determining whether the shape should be
filled in. The point for the upper left corner is used to determine and initialize
the other points of the square.

Notes

e Implementation is provided in full for the Circle, Diamond, Polygon, and
ShapeUtils classes. Complete all other classes, using the TODO comments
for guidance. (JPanel and JFrame are classes defined by the Java SWING
API; do not create these classes, as your code will not work)

e Write JUnit tests for all the shape classes.

e DrawPanel is the only class that provides a paintComponent() method. The
shapes are drawn because this method calls their draw() methods. Note: you
will not explicitly call this paintComponent() method as it is invoked by Java’s
painting subsystem whenever a component needs to be rendered.

e DrawFrame is the main entry point of the program (it provides a main()
method).

e For debugging, the call stack trace can be very long. Start from the top and
find the lines of your code that led to the error. From there, start inspecting
at the first line of your code, to the top of the stack.

Final Steps

1. Generate Javadoc using Eclipse.

Select Project/Generate Javadoc...

Make sure that your project (and all classes within it) is selected

Select Private visibility
Use the default destination folder

o Click Finish.

2. Open the lab10/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that that all of your classes are listed and that all of your documented
methods have the necessary documentation.

3. If you complete the above instructions during lab, you may have your imple-
mentation checked by one of the TAs.

Submission Instructions

Before submission, finish testing your program by executing your unit tests. If your
program passes all tests and your classes are covered completely by your test classes,
then you are ready to attempt a submission. Here are the details:

e All required components (source code and compiled documentation) are due
at 7pm on Monday, October 30. Submission must be done through the
Web-Cat server.

e Use the same submission process as you used in lab 1. You must submit your
implementation to the Lab 10: Java Graphics area on the Web-Cat server.

10

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 40 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against a set of tests (called Unit Tests). These unit tests will
not be visible to you, but the Web-Cat server will inform you as to which tests
your code passed/failed. This grade component is a product of the fraction of
our tests that your code passes and the fraction of your code that is covered
by your tests. In other words, your submission must perform well on both
metrics in order to receive a reasonable grade.

Style/Coding: 25 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader (typically sometime after the lab
deadline). Any errors in your program will be noted in the code stored on
the Web-Cat server, and two points will be deducted for each. Possible errors
include:

e Non-descriptive or inappropriate project- or method-level documentation
(up to 10 points)

e Missing or inappropriate inline documentation (2 points per violation; up
to 10 points)

e Inappropriate choice of variable or method names (2 points per violation;
up to 10 points)

e Inefficient implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

e Incorrect implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

11

If you do not submit compiled Javadoc for your project, 5 points will be de-
ducted from this part of your score.

Note that the grader may also give warnings or other feedback. Although
no points will be deducted, the issues should be addressed in future submis-
sions(where points may be deducted).

Bonus: up to 5 points

You will earn one bonus point for every two hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose ten points for every minute that your assignment is submitted
late. For a submission to be considered on time, it must arrive at the server by
the designated minute (and zero seconds). For a deadline of 9:00, a submission
that arrives at 9:00:01 is considered late (in this context, it is one minute late).

After 15 submissions to Web-Cat, you will be penalized one point for every
additional submission.

For labs, the server will continue to accept submissions for three days after the
deadline. In these cases, you will still have the benefit of the automatic feedback.
However, beyond ten minutes late, you will receive a score of zero.

The grader will make their best effort to select the submission that yields the
highest score.

12

