
Lab Exercise 11
CS 2334

November 2, 2015

Due: 7:00 pm on Saturday, November 4, 2017

Introduction

In this lab, you will extend your knowledge of creating graphics in Java. Specifically,
you will experiment with using KeyListeners and KeyEvents to construct graphics
programs that react to keyboard button presses that are made by a user.

The game that you are completing requires the player to use the arrow keys to
move through a set of obstacles and capture a villain. The player must stay within
the unoccupied area of the screen. If the player cannot catch the villain before time
is up, then the game will end in failure.

Learning Objectives

By the end of this laboratory exercise, you should be able to:

1. Create event-driven graphics

2. Use a KeyListener to update graphics based on KeyEvents

3. Read existing code and documentation in order to complete an implementation

1

Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

Preparation

1. Import the existing lab11 implementation into your eclipse workspace.

(a) Download the lab11 implementation:
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab11/lab11.zip

(b) In Eclipse, select File/Import

(c) Select General/Existing projects into workspace. Click Next

(d) Select Select archive file. Browse to the lab11.zip file. Click Finish

2

http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab11/lab11.zip

Game: Super Showdown

Below is an image of the graphical user interface for the game that we are creating.

The Batman image is one of four avatars that the player can use. The bombs
are obstacles that the player must move around. These bombs appear in random
locations at the start of each game. The villain will move randomly throughout the
game, and the hero must catch him before time runs out. This is done by moving the
player right, left, up, or down using the corresponding arrow keys on the keyboard.

The player (and villain) can wrap around the window to get to the other side,
when going left or right. Wrapping does not happen when going up or down.
The modulus operator (i.e. %) can be used to conveniently make circular/wrapping
operations. See the code for the villain movements for examples. Below is an example
of wrapping:

3

4

The player may never occupy the same space as an obstacle. If a player attempts
to move onto an obstacle, the position of the avatar will not be changed. As a result,
the avatar will never be drawn on top of a bomb icon.

When catching the villain, it is okay for the player to be drawn over the same
tile as the villain.

5

If the player takes too long to catch the villain, the villain gets away and the
player loses the game.

6

UML

Here is the design of your classes. You are responsible for completing the implemen-
tations of the classes highlighted in blue.

Superhero

-name:String
-fightLength:int
-difficultyLevel:int
-battleIcon:Image
-city:Image
-villain:Image

+Superhero(name:String, pub:String, fightLength:int, difficultySpeed:int)
+getBattleImage():Image
+getBattleCity():Image
+getVillain():Image
+getName():String
+getFightLength():int

GameRow

-occupiedPositions:ArrayList<Integer>

+GameRow()
+addToOccupiedSpaces(space:int):void
+clearOccupiedSpaces():void
+isEmptySpace():boolean
+isEmptySpace(space:int):boolean
+getOccupiedPositions():ArrayList<Integer>

GameView

-rand:Random
-nBlocksWide:int
-nBlocksTall:int
-nPixelsWide:int
-nPixelsTall:int
-rows:ArrayList<GameRow>
-playerPos:int[]
-villainPos:int[]
-gameLength:int
-isGameOver:boolean
-background:Image
-hero:Image
-obstacle:Image
-villain:Image

+GameView(nBlocksWide:int, nBlocksTall:int, nPixelsWide:int, nPixelsTall:int, ahero:Superhero)
+draw(graphics:Graphics):void
-drawRow(y:int, blockWidth:int, blockHeight:int, row:GameRow, graphics:Graphics):void
-drawPlayer(blockWidth:int, blockHeight:int, graphics:Graphics):void
-drawVillain(blockWidth:int, blockHeight:int, graphics:Graphics):void
+moveVillainRandom(framenum:int, framesToMove:int):int[]
+movePlayerRight():int
+movePlayerLeft():int
+movePlayerUp():int
+movePlayerDown():int
+playerIsDead():boolean
+playerHasWon():boolean
+getPlayerPosition():int[]
+getVillainPosition():int[]
+playerCanMove(deltaX:int, deltaY:int):boolean
+isEmptySpace(row:int, space:int):boolean
+clearObstacles():void

JPanel

GamePanel

-serialVersionUID:long
-model:GameView

+GamePane(width:int, height:int, superhero:Superhero)
+getGame():GameView
#paintComponent(graphics:Graphics):void

JFrame

GrameFrame

-serialVersionUID:long
-panel:GamePanel

+GameFrame(superhero:Superhero, width:int, height:int)
+getPanel():GamePanel

Driver

+main(args:String[]):void

1

*

1

11

Lab 11: Specific Instructions

All of the classes shown in the UML are provided in lab11.zip.

1. Most of the classes are implemented. We want you to implement the graphics,
not the logic of the game, by finishing the implementation for the classes in
blue in the UML. However, you need to analyze and understand the game logic
to implement the graphics accordingly.

• Driver, GamePanel, Superhero and GameRow have been fully im-
plemented. Read and understand these classes before moving on. The

7

GameRow class keeps track of the obstacles (i.e., the bombs) within the
frame using an ArrayList of indices. The row location (an integer) of each
obstacle is stored in this array.

• Complete the implementation of the GameFrame by adding a KeyLis-
tener to the constructor.

– When you implement the KeyListener, Java will require you to cre-
ate handler methods for three events types. Since you only need one
event type, it is okay to leave the other two methods with no body.

– Alternatively, you may implement a KeyAdapter, for which you
only need to override the one method of interest.

– You will need to use the repaint() method of the frame to redraw
the player after moving, to force the frame to update itself.

• Complete the implementation of GameView

– Most of the logic occurs in this class. Fully analyze and understand
the code before moving on.

– You will need to complete the draw methods for the villain and the
player, and the movement methods for the player. Additionally, com-
plete the playerCanMove(int,int) method.

– Read the comments and follow the TODOs to help figure out what
needs to be implemented.

2. Don’t forget to document as you go!

3. You will not need JUnit tests for this lab. You will need to test your code
manually through interaction with the GUI. Nonetheless, JUnit tests will be
waiting on Web-Cat to ensure that your code is performing as expected.

Final Steps

1. Generate Javadoc using Eclipse.

• Select Project/Generate Javadoc...

• Make sure that your project is selected, as well as all of the Java source
files

• Select Private visibility

• Use the default destination folder

8

• Click Finish

2. Open the lab11/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that that all of your classes are listed and that all of your documented
methods have the necessary documentation.

3. If you complete the above instructions during lab, you may have your imple-
mentation checked by one of the TAs.

Submission Instructions

• All required components (source code and compiled documentation) are due at
7:00pm on Saturday, November 4th. You will not need JUnit tests for this lab.
You will need to test your code manually through interaction with the GUI.

• Submit your code to Lab 11: Interactive Graphics on WebCat using 1 of the 2
methods described from lab 1.

9

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 40 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against a set of tests (called Unit Tests). These unit tests will
not be visible to you, but the Web-Cat server will inform you as to which tests
your code passed/failed. This grade component is a product of the fraction of
our tests that your code passes and the fraction of your code that is covered
by your tests. In other words, your submission must perform well on both
metrics in order to receive a reasonable grade.

Style/Coding: 25 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader (typically sometime after the lab
deadline). Any errors in your program will be noted in the code stored on
the Web-Cat server, and two points will be deducted for each. Possible errors
include:

• Non-descriptive or inappropriate project- or method-level documentation
(up to 10 points)

• Missing or inappropriate inline documentation (2 points per violation; up
to 10 points)

• Inappropriate choice of variable or method names (2 points per violation;
up to 10 points)

• Inefficient implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

• Incorrect implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

10

If you do not submit compiled Javadoc for your project, 5 points will be de-
ducted from this part of your score.

Note that the grader may also give warnings or other feedback. Although
no points will be deducted, the issues should be addressed in future submis-
sions(where points may be deducted).

Bonus: up to 5 points

You will earn one bonus point for every two hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose ten points for every minute that your assignment is submitted
late. For a submission to be considered on time, it must arrive at the server by
the designated minute (and zero seconds). For a deadline of 9:00, a submission
that arrives at 9:00:01 is considered late (in this context, it is one minute late).

After 15 submissions to Web-Cat, you will be penalized one point for every
additional submission.

For labs, the server will continue to accept submissions for three days after the
deadline. In these cases, you will still have the benefit of the automatic feedback.
However, beyond ten minutes late, you will receive a score of zero.

The grader will make their best effort to select the submission that yields the
highest score.

11

