
Lab Exercise 13: Recursion
CS 2334

November 16, 2017

Introduction

In this lab, you will use recursive logic to create fidget spinners based on a fractal
triangle, commonly known as a Sierpinski triangle. Recursion has many practical
uses outside of graphics, but fractals provide a great way to visualize the concept.

Learning Objectives

By the end of this laboratory exercise, you should be able to:

1. Read existing code and documentation in order to complete an implementation

2. Define the base and recursive cases of a recursive formulation

3. Correctly call a method recursively

4. Create a timer for animation purposes

1

Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

Preparation

1. Import the existing lab 13 implementation into your eclipse workspace.

(a) Download the lab 13 implementation:
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab13/lab13.zip

(b) In Eclipse, select File/Import

(c) Select General/Existing projects into workspace. Click Next

(d) Select Select archive file. Browse to the lab13.zip file. Click Finish

2

http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab13/lab13.zip

Sierpinski Triangle

The fidget spinner you will create in this lab is based off of the geometry of the
Sierpinski Triangle.

The Sierpinski Triangle is a fractal and attractive fixed set with the over-
all shape of an equilateral triangle, subdivided recursively into smaller
equilateral triangles.
– from https://en.wikipedia.org/wiki/Sierpinski_triangle

For this lab, there are some properties of equilateral triangles that you will need
to know:

1. A side of the triangle, s.

2. The radius of the triangle, r.

3. The apothem of the triangle, a.

The following relations may be of some use to you:

1. Given the radius, a side is equal to: s =
√

3× r

2. Equivalently, the radius is equal to: r = s√
3

3. The apothem is equal to: a =
√
3
6
× s

The first three iterations of the Sierpinski triangle are shown below (With radii
and apothems shown—these won’t be drawn in your implementation):

3

https://en.wikipedia.org/wiki/Sierpinski_triangle

Excluding the black line segments, segments of the same color are the same length.
Taking note of this, one can see that the radius of each of the three smaller triangles
surrounding a larger triangle is equal to the larger triangle’s apothem.

Furthermore, the distance between their center points and the larger triangle’s
center point is twice the apothem of the larger triangle.

The Sierpinski triangle can be constructed by first starting with an equilateral
triangle in the standard orientation (sitting flatly on a side, with one vertex pointing
straight up). After drawing this, proceed to recursively draw smaller triangles rotated
180 degrees relative to the orientation of the base triangle. The code you make should
be able to draw both Fidget Spinners and a Sierpinski Triangle. To draw the triangle,
you can do as follows:

1. The draw() method of the SierpinskiSpinner class is called.

2. Draw the base triangle (sitting flatly on a side, one vertex pointing straight
up).

3. Call the drawHelper() method with the correct arguments to draw a triangle
in the correct orientation (one vertex pointing straight down), in the correct
position, with radius determined using the mathematical relations listed above.

4. In drawHelper(), draw the triangle.

5. Compute the apothem of the triangle.

6. Compute the center points of the three surrounding triangles (Remember that
all of these triangles are equilateral, so the triangle center points will be evenly
spaced 120 degrees around the center triangle).

7. Go to step 3 for the three surrounding triangles

4

Sierpinski Spinner

This is what we will actually create for the lab. To create the spinner, we make
three main modifications to the original Sierpinski Triangle design:

1. We draw a circle inscribed inside each of the Downward-Facing Triangles. These
represent the centers of each fidget spinner.

2. We draw a line between the circles. This represents the arm of each fidget
spinner.

3. We add the ability to rotate each sub-triangle around its center triangle. This
gives the appearance that each level of spinners is spinning.

5

UML

JPanel

ControlPanel

-controlCount: int
-maxRowCount: int

+ControlPanel(maxRowCount:int)
+addControl(label:String, control:JComponent, toolTipText:String): void

SierpinskiApplication

~applicationFrame: JFrame
-ANIMATION_TICK = 40: int
-sPanel: SierpinskiPanel
-recursionDepthSlider: JSlider
-rotationSlider: JSlider
-sizeSlider: JSlider
-wireframeCheckBox: JCheckBox
-circleCheckBox: JCheckBox
-triangleCheckBox: JCheckBox
-primaryColorSelected: boolean
~timer: Timer
-width: int
-height: int

+SierpinskiApplication(title:String, width:int, height:int)
+start(): void
+main(String[] args): void

SierpinskiPanel

-spinner: SierpinskiSpinner

+SierpinskiPanel()
+changeSpinner(spinner:SierpinskiSpinner): void
+setRadius(radius:int): void
+setRotationalVelocity(velocity:double): void
+setDepth(depth:int): void
+setFilled(filled:boolean): void
+setDrawCircles(draw:boolean): void
+setDrawTriangles(draw:boolean): void
+setPrimaryColor(color:Color): void
+setSecondaryColor(color:Color): void
-updateSpinner(): void
+redraw(): void
#paintComponent(g:Graphics): void

SierpinskiSpinner

-serialVersionUID = 42L: long
-drawingDepth: int
-baseRadius: int
-angleOffset: double
-rotationalVelocity: double
-toggleCircle: boolean
-toggleTriangle: boolean
-filled: boolean
-center: Point
-primaryColorStep: Color
-secondaryColorStep: Color
-BACKGROUND_COLOR = Color.BLACK: Color
-primaryColor: Color
-secondaryColor: Color

+SierpinskiSpinner(depth:int, centerPoint:Point, radius:int,
 primaryColor:Color, secondaryColor:Color, filled:boolean,
 toggleCircle:boolean, toggleTriangle:boolean)
+SierpinskiSpinner(depth:int, centerPoint:Point, radius:int,
 rotationalVelocity:double, primaryColor:Color, secondaryColor:Color, filled:boolean,
 toggleCircle:boolean, toggleTriangle:boolean)
+computeVertex(centerPoint:Point, radius:double, angle:double): Point
+generateColor(isPrimary:boolean, depth:int): Color
+getCenterPoint(): Point
+getDepth(): int
+isFilled(): boolean
+getRadius(): int
+getRotationalVelocity(): double
+getAngleOffset(): double
+setCenterPoint(point:Point): void
+setColorSteps(): void
+setDepth(depth"int): void
+setToggleCircle(toggleCircle:boolean): void
+setToggleTriangle(toggleTriangle:boolean): void
+setFilled(filled:boolean): void
+setPrimaryColor(color:Color): void
+setRadius(radius:int): void
+setRotationOffset(offset:double): void
+setRotationalVelocity(velocity:double): void
+setSecondaryColor(color:Color): void
-drawTriangle(g:Graphics, centerPoint:Point, radius:int,
 rotationOffset:double, color:Color, drawFilled:boolean): void
-drawHelper(g:Graphics, depth:int, centerPoint:Point,
 radius:int, intialRotationOffset: double, rotationOffset:double): void
-ovalFromCenter(g:Graphics, centerX:double, centerY:double, radius:double): void
-drawThickLine(g:Graphics, x1:int, y1:int, x2:int, y2:int, thickness:int): void
+draw(g:Graphics): void

1

1

*

6

Lab 13: Specific Instructions

All of the necessary classes are provided in lab13.zip.

1. Look carefully through the existing code and implement any TODOs.

2. Do not add major functionality to the classes beyond what has been specified.

3. Don’t forget to document as you go!

SierpinskiApplication class

� SierpinskiApplication() — At the bottom of the constructor a new
javax.swing.Timer object needs to be created, using
SierpinskiApplication.ANIMATION TICK as the delay value. An ActionLis-
tener that calls code from a SierpinskiPanel instance should cause a step in the
animation to occur. This step moves the triangles and redraws the frame.

� To test your program, click on any point in the drawing panel. This will move
the Sierpinski Spinner to that point. To change how the spinner is drawn, use
the control panel’s sliders and toggle boxes. This will allow you to change the
size, rotation speed, and recursion depth, as well as allowing to toggle drawing
of triangles and circles on/off or drawing them as wireframes.

SierpinskiSpinner Class

� draw(Graphics g) — This method is responsible for actually drawing the Sier-
pinski triangle to the screen, using the provided Graphics object. Using the
Color SierpinsikiTriangle.BACKGROUND COLOR, draw the base triangle.
Then, call drawHelper() with the appropriate arguments to draw the first,
inner triangle, on top of the base triangle.

� drawHelper(Graphics g, int depth, Point centerPoint, int radius, double ini-
tialRotationOffet, double rotationOffset) — This is a recursive method that
draws a triangle given the provided parameters, and then calls itself to draw
surrounding triangles.

This method takes in the following parameters:

1. g — The Graphics object to use for drawing.

7

2. depth — The current recursive depth. The initial call to this method
should have depth equal to the triangle’s depth field.

3. centerPoint — The center point of the triangle to be drawn.

4. radius — The radius of the triangle to be drawn.

5. initialRotationOffset — The initial rotation of the base triangle draw re-
cursively. This is used to ensure that all triangles are drawn with the
same orientation.

6. rotationOffset — This offset is used to calculate the center points of each
next level of triangles. By multiplying this offset by a factor of four at
each recursive call, we can create a greater rotational offset of the next
level of triangles’ center points. This creates an effect of spinning on each
level of triangles.

For each call to this method, use the color returned by generateColor() to draw
the triangle (Triangles are drawn with the primary color).

If the toggleCircle boolean has been set to true, you will need to draw an
inscribed circle on top of this current triangle; use the color returned by the
generateColor() method to do so (The circles are drawn with the secondary
color).

An inscribed circle looks like the following:

The SierpinskiSpinner class has a helper method called computeVertex() that
takes in a center point, a radius, and an angle. The method starts by generating
a point radius units directly above the specified center point. The point is then
rotated angle radians about the center point.

8

Elaboration on the Geometry of Recursion

Depth = 0

� The base triangle is drawn. The rotation is determined by the angleOffset
variable in the SierpinskiSpinner class.

� The gray triangle overlay represents an unrotated triangle, while the black
triangle represents a triangle rotated by an angle equal to angleOffset.

� At depth 0, no circles are drawn.

Depth = 1

9

� The first triangle (white triangle) created through the drawHelper method is
drawn (left panel).

� The angleOffset + PI becomes the initial rotation offset. This determines the
orientation of the triangles that we draw.

� At depth 1, a single circle is drawn for the fidget spinner (right panel).

Depth = 2

� The new triangles (gray triangles) are drawn around the triangle created from
Depth = 1 (white triangle)

� The green arrow is the direction of the white triangle, the same as the gray
triangles. The blue arrow is the downward direction, and offset of PI. The red
arrow is the direction of the 0 in the unit circle. We use the unit circle to
compute the new centerpoints.

10

� At depth 2, a circle is draw in the center with 3 orbiting circles connected by
lines. This is a basic fidget spinner (right panel).

Depth = 3

� To compute the centerpoints of the smallest triangles, we follow the same pro-
cedure as depth 2. The only difference is that when going between levels of
depth we multiply the original rotationOffset by 4.

� At depth 3, there is a fidget spinner at the base with 3 new fidget spinners
on top. Because the rotation of the smaller spinners changes faster, we get a
spinning effect on all levels.

SierpinskiPanel Class

� updateSpinner() — This method is responsible for computing the new orien-
tation of the spinner. The spinner’s angle offset is updated at each animation
step. It is equal ot the current offset plus the rotational velocity.

Hints

The center point for the ith child can be computed from the current triangle’s cen-
terPoint as follows:

computeVertex (centerPoint ,
(i n t) (apothem * 2) ,
initialRotationOffset

+ (−Math . PI / 3 + ((2 * Math . PI / 3) * i))
+ rotationOffset) ;

11

Final Steps

1. Generate Javadoc using Eclipse.

� Select Project/Generate Javadoc...

� Make sure that your project (and all classes within it) is selected

� Select Private visibility

� Use the default destination folder

� Click Finish.

2. Open the lab13/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that that all of your classes are listed and that all of your documented
methods have the necessary documentation.

3. If you complete the above instructions during lab, you may have your imple-
mentation checked by one of the TAs.

Submission Instructions

Before submission, finish testing your program by hand-testing the graphical output.
If you are ready to attempt a submission. Here are the details:

� All required components (source code and compiled documentation) are due at
7pm on Saturday, November 18. Submission must be done through the
Web-Cat server.

� Use the same submission process as you used in lab 1. You must submit your
implementation to the Lab 13: Recursion area on the Web-Cat server.

12

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 40 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against a set of tests (called Unit Tests). These unit tests will
not be visible to you, but the Web-Cat server will inform you as to which tests
your code passed/failed. This grade component is a product of the fraction of
our tests that your code passes and the fraction of your code that is covered
by your tests. In other words, your submission must perform well on both
metrics in order to receive a reasonable grade.

Style/Coding: 25 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader (typically sometime after the lab
deadline). Any errors in your program will be noted in the code stored on
the Web-Cat server, and two points will be deducted for each. Possible errors
include:

� Non-descriptive or inappropriate project- or method-level documentation
(up to 10 points)

� Missing or inappropriate inline documentation (2 points per violation; up
to 10 points)

� Inappropriate choice of variable or method names (2 points per violation;
up to 10 points)

� Inefficient implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

� Incorrect implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

13

If you do not submit compiled Javadoc for your project, 5 points will be de-
ducted from this part of your score.

Note that the grader may also give warnings or other feedback. Although
no points will be deducted, the issues should be addressed in future submis-
sions(where points may be deducted).

Bonus: up to 5 points

You will earn one bonus point for every two hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose ten points for every minute that your assignment is submitted
late. For a submission to be considered on time, it must arrive at the server by
the designated minute (and zero seconds). For a deadline of 9:00, a submission
that arrives at 9:00:01 is considered late (in this context, it is one minute late).

After 15 submissions to Web-Cat, you will be penalized one point for every
additional submission.

For labs, the server will continue to accept submissions for three days after the
deadline. In these cases, you will still have the benefit of the automatic feedback.
However, beyond ten minutes late, you will receive a score of zero.

The grader will make their best effort to select the submission that yields the
highest score.

14

