
Lab Exercise 5: Exceptions
CS 2334

September 21, 2017

Introduction

This lab focuses on the use of Exceptions to catch a variety of errors that can occur,
allowing your program to take appropriate corrective action. You will implement a
simple calculator program that allows the user to specify an operator and up to two
operands (arguments / parameters). Your program will parse these inputs, perform
the operation and print out the result. If an error occurs during any of these steps,
your program will catch the errors and provide appropriate feedback to the user.

Learning Objectives

By the end of this laboratory exercise, you should be able to:

1. Create a program that interacts with a user through text

2. Implement and throw a custom Exception

3. Robustly handle Exceptions with a try/catch/finally block

Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

1

Preparation

1. Download the lab5 partial implementation:
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab5/lab5.zip

User Interaction

Each line that is typed by the user is interpreted as a potential expression. Valid
expressions consist of a sequence of one, two or three tokens (each token is separated
from the preceding token by one or more spaces), and may take on one of the following
forms:

� 1 token: [quit]. The program responds by exiting

� 2 tokens: [UOP N], where N is an integer and UOP is a unary operator (“-”).
The program responds by displaying the negative of the given integer

� 3 tokens: [N1 BOP N2], where N1 and N2 are integers and BOP is a binary
operator (“+” or “/” only). The program responds by displaying the result of
applying the designated operator to the two arguments

Inputs resulting in an illegal integer operation or not following one of these for-
mats result in the display of a specific error message.

2

http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab5/lab5.zip

Below is an example interaction with a user. Note that both the user’s input and
the program’s response are shown.

4 + 2
The result is : 6
Input was : 4 + 2
42+7
Illegal input : Illegal Argument

Input was : 42+7
4 / 2
The result is : 2
Input was : 4 / 2
foo + 2
Illegal input : Illegal Argument

Input was : foo + 2
42 ˆ 3
Illegal input : Illegal Operator

Input was : 42 ˆ 3

Illegal input : Illegal Argument

Input was :
32 ˆ baz

Illegal input : Illegal Argument

Input was : 32 ˆ baz

foobar ˆ 3
Illegal input : Illegal Argument

Input was : foobar ˆ 3
4 / 0
Tried to divide by zero

Input was : 4 / 0
−4
Illegal input : Illegal Argument

Input was : −4
− 4
The result is : −4
Input was : − 4
1 + 2 + 3
Illegal input : Illegal Token Length

Input was : 1 + 2 + 3
45+ 2
Illegal input : Illegal Operator

Input was : 45+ 2
45 +2
Illegal input : Illegal Operator

Input was : 45 +2
QUIT

Quitting

Class Design

Below is the UML representation of the set of classes that you are to implement
for this lab. It is important that you adhere to the instance variables and method

3

names provided in this diagram (we will be executing our own JUnit tests against
your code). In this diagram, you are seeing some new notation: the dashed open
arrow means that there is some loose relationship between the classes. It is not an
is-a relationship (class inheritance), or even a has-a relationship (a class or instance
variable referring to another class). This relationship is much more nebulous – here,
we are acknowledging that one class has local variables that reference another class.

The Exception class is provided by the Java API. The CalculatorException class
is derived from Exception. Note that we do not add any extra functionality to
this class. It exists simply so that our try/catch/finally blocks can check for the
particular exception. By making a new Exception type, we enable the program to
pass more detailed information about what errors have occurred, just by having
a more specific class. To provide even further granularity to our errors, we also
construct the following classes:

1. QuitException: thrown when the user inputs ”quit” to end the program (case
insensitive).

2. DivideByZeroException: thrown when the program attempts to divide by 0.

3. IllegalInputException: thrown when the input does not match with a format
that we expect. This exception also has a private String variable exceptionType
and a getter for the variable. exceptionType is set through the IllegalInputEx-
ception constructor and gives some more detail about what kind of input error
occurred. Valid strings to give are:

(a) “Illegal Token Length”: when the number of tokens is less than 1 or
greater than 3.

(b) “Illegal Argument”: when a token does not match the type of token ex-
pected in its position. For example, in the input ”1 + a”, ”a” is an illegal
argument, as it is not an int.

(c) “Illegal Operator”: when a token in an operator position is not supported
by the program. The program only accepts the “+” and “/” operators
for binary operations. So, “1 * 2” would yield this error.

4

IllegalInputException

- exceptionType : String

+ IllegalInputException(type : String)
+ getExceptionType() : String

DivideByZeroException

QuitException

Driver

+main(args:String[]):void

Calculator

+compute(tokens:String[]):int
 throws CalculatorException
+parseAndCompute(input:String):boolean

CalculatorException

Exception

The Calculator class provides two methods. The following method is responsible
for taking as input a single String that is to be interpreted as an expression:

pub l i c s t a t i c boolean parseAndCompute (String input)

This method:

1. Separates the String into a set of tokens (substrings that are separated by one
or more spaces)

2. Calls compute() to evaluate the expression

3. Prints out one line with the result or an error message. What error message is
printed is dependent on what exception type is caught. We have the following
possibilities for printing:

(a) No Exception Caught: “The result is: ” + result

(b) QuitException Caught: “Quitting”

(c) IllegalInputException Caught: “Illegal input: ” + e.getExceptionType()

(d) CalculatorException Caught (DivideByZeroException is the only remain-
ing case): “Tried to divide by zero”. We catch the more general exception
here to make the code coverage measure happy.

5

4. Prints out a second line with what the input was, even when returning (while
we would like to use a finally block for this, the code coverage measure will not
be happy if you do).

5. Returns a boolean to indicate whether the program should terminate

The compute() method is responsible for interpreting the set of tokens and pro-
ducing a result:

pub l i c s t a t i c i n t compute (String [] tokens) throws CalculatorException

If there are two or three tokens that make up a valid expression, then this method
returns the int result. In all other cases, this method throws a CalculatorException,
selecting the appropriate type (QuitException, DivideByZeroException, or IllegalIn-
putException) to throw. When there is exactly one token that is equal to the String
“quit” with any casing, a QuitException is thrown. The details for the appropriate
exception message are given in the code skeleton that we provide.

You must implement your own JUnit test class called CalculatorTest. We have
provided CalculatorSampleTest that gives a few hints as to how to test with Excep-
tions.

The Driver class is provided and is responsible for opening an input stream from
the user and repeatedly reading and evaluating lines of input until a quit has been
received.

Implementation Steps

1. Complete the implementation of the QuitException class.

2. Complete the implementation of the DivideByZeroException class.

3. Complete the implementation of the IllegalInputException class.

4. Complete the implementation of the Calculator class.

5. Implement a JUnit test for the Calculator class.

Final Steps

1. Generate Javadoc using Eclipse.

6

� Select Project/Generate Javadoc...

� Make sure that your lab5 project is selected, as are all of your java files

� Select your doc directory

� Select Private visibility

� Use the default destination directory

� Click Finish

2. Open the lab5/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to
make sure that all of your classes are listed and that all of your documented
methods have the necessary documentation.

3. If you complete the above instructions during lab, you may have your imple-
mentation checked by one of the TAs.

Submission Instructions

Before submission, finish testing your program by executing your unit tests. If your
program passes all tests and your classes are covered completely by your test classes,
then you are ready to attempt a submission. Here are the details:

� All required components (source code and compiled documentation) are due at
7pm on Saturday, September 23) Submission must be done through the
Web-Cat server.

� Use the same submission process as you used in lab 1. You must submit your
implementation to the Lab 5: Exceptions area on the Web-Cat server.

Hints

� Recall that a try/catch/finally block can have multiple catch statements. This
allows you to check for different errors and respond in kind.

� Be careful not to deviate from the specification. It is okay to have empty ex-
ception classes, as these exceptions when thrown give more specific information
to the program and the user about what error occurred.

7

� It is bad coding style for a catch statement to catch all Exceptions (unless
you really mean to catch all exceptions). Instead, you should only catch the
specific exceptions that you expect to happen. This way, other, unexpected
exceptions will still result in a halt of your program, making it easier to track
down problems.

� Although Java allows switch statements to be used with Strings, code coverage
computations do not work properly for these cases. Instead, you should use
if/else cascades to implement a sequence of tests of this type.

8

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 45 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against a set of tests (called Unit Tests). These unit tests will
not be visible to you, but the Web-Cat server will inform you as to which tests
your code passed/failed. This grade component is a product of the fraction of
our tests that your code passes and the fraction of your code that is covered
by your tests. In other words, your submission must perform well on both
metrics in order to receive a reasonable grade.

Style/Coding: 20 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader (typically sometime after the lab
deadline). Any errors in your program will be noted in the code stored on
the Web-Cat server, and two points will be deducted for each. Possible errors
include:

� Non-descriptive or inappropriate project- or method-level documentation
(up to 10 points)

� Missing or inappropriate inline documentation (2 points per violation; up
to 10 points)

� Inappropriate choice of variable or method names (2 points per violation;
up to 10 points)

� Inefficient implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

� Incorrect implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

9

If you do not submit compiled Javadoc for your project, 5 points will be de-
ducted from this part of your score.

Note that the grader may also give warnings or other feedback. Although
no points will be deducted, the issues should be addressed in future submis-
sions(where points may be deducted).

Bonus: up to 5 points

You will earn one bonus point for every two hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose ten points for every minute that your assignment is submitted
late. For a submission to be considered on time, it must arrive at the server by
the designated minute (and zero seconds). For a deadline of 9:00, a submission
that arrives at 9:00:01 is considered late (in this context, it is one minute late).

After 15 submissions to Web-Cat, you will be penalized one point for every
additional submission.

For labs, the server will continue to accept submissions for three days after the
deadline. In these cases, you will still have the benefit of the automatic feedback.
However, beyond ten minutes late, you will receive a score of zero.

The grader will make their best effort to select the submission that yields the
highest score.

10

