
Lab 8: HashMaps and Enums
CS 2334

October 12, 2017

Introduction

The origins or superheroes are varied: they come from different planets and many
different circumstance. Their life experiences shape their personalities and their
powers, endowing them with particular strengths and weaknesses. When superheroes
are pitted against one-another, the specific pairing of strengths and weaknesses can
give one superhero an advantage over another. In this lab, we will provide code that
will enable the Master of the Intergalactic Arena to set up battles between pairs
of superheroes.

In your implementation, you will experiment with using HashMaps and Enumer-
ated data types in Java. You will implement a few different classes of enums. One
enum has a custom class that is associated with each enum value. Another enum
contains HashMaps that map between different values of the enum. Your imple-
mentation will also experiment with iterating over the elements contained within a
Hashmap.

Learning Objectives

By the end of this laboratory exercise, you should be able to:

1. Create an enumerated data type and initialize parts of the type using a static
initializer block

2. Create and add items to a HashMap

3. Pull values out of a HashMap using a key

1

4. Iterate over a HashMap in order to print out information

Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

Preparation

1. Import the existing lab 8 implementation into your eclipse workspace.

(a) Download the lab 8 implementation:
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab8/lab8.zip

(b) In Eclipse, select File/Import

(c) Select General/Existing projects into workspace. Click Next

(d) Select Select archive file. Browse to the lab8.zip file. Click Finish

2

http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab8/lab8.zip

Representing Different Superheroes

Below is the UML representation of the lab. Your task will be to implement this set
of classes and an associated set of JUnit test procedures.

HeroArena

- heroMap: LinkedHashMap<String, Superhero>

+ HeroArena()
+ getHero(key : String) : Superhero
+ getHeroAbbreviations() : Set<String>
+ listHeroes() : String
+ battleHeroes(heroA : Superhero,
 heroB : Superhero) : Superhero

Driver

- arena : HeroArena

+ main(args: String[]): void

«enumeration»
Superhero

BATMAN(...)
SUPERMAN(...)
MARTIAN_MANHUNTER(...)
FLASH(...)

- info: HeroInfo

- Superhero(info : HeroInfo)
+ getSpecies() : Species
+ getSuperpower(): Superpower
+ toString(): String

HeroInfo

- species : Species
- superpower : Superpower

+ HeroInfo(species: Species,
 superpower: Superpower)
+ getSpecies(): Species
+ getSuperpower(): Superpower
+ toString(): String

«enumeration»
Superpower

MIND
STRENGTH
SPEEDSTER

- STRENGTH_MAP:
 HashMap<Superpower,
 Superpower>

+ effectiveAgainst(): Superpower
+ toString(): String

«enumeration»
Species

EARTH
KRYPTON
MARS
OA

+ toString(): String

1

1

4

1

1

We will only be using the following Superheroes for this lab: Batman, Superman,
Martian Manhunter, and Flash. The keys used in HeroArena with the heroMap
HashMap are three letter abbreviations for the names of the Superhero: BAT, SUP,
MAR, and FLS respectively. The properties of the three Superheroes that we will
represent in this lab are as follows:

� BATMAN: species - EARTH, superpower - STRENGTH

� SUPERMAN: species - KRYPTON, superpower - STRENGTH

� MARTIAN MANHUNTER: species - MARS, superpower - MIND

� FLASH: species - EARTH, superpower - SPEEDSTER

A Superhero’s type affects how well s/he does in combat with other Superheroes.
Certain types are especially effective against others, as defined by the following table:

3

Type Effective Against
STRENGTH SPEEDSTER

SPEEDSTER MIND
MIND STRENGTH

Table 1: Type effectiveness table

Lab 8: General Instructions

1. In lab8.zip, we have provided a full implementation of the Driver class.

2. We have provided partial implementations of the HeroArena and Super-
power classes. Create the remaining classes from the UML diagram below
(HeroInfo, Species, and Superhero).

� Be sure that the class name is exactly as shown

� You must use the default package, meaning that the package field must
be left blank

3. Implement the attributes and methods for each class

� We suggest that you start at the “bottom” of the class hierarchy: start
by implementing classes that do not depend on other classes

� Use the same spelling for instance variables and method names as shown
in the UML

� Do not add functionality to the classes beyond what has been specified

� Don’t forget to document as you go!

4. Create test classes and use JUnit tests to thoroughly test all of your code
(except the Driver class).

� You need to convince yourself that everything is working properly

� Make sure that you cover all the classes and methods while creating your
test. Keep in mind that we have our own tests that we will use for grading.

4

Lab 8: Specific Instructions

Species Enum

This enumeration should have the following members: EARTH, KRYPTON, MARS,
OA.

� toString(): This method should return the name, in lowercase, of the particular
member of the enum.

Superpower Enum

This enumeration has the following members: STRENGTH, MIND, SPEEDSTER.

The Superpower enum contains a subset of the possible types of superpowers that
a Superhero can have (there are many more types than the three we are using in the
lab).

As previously mentioned, a Superhero’s type effects how well it does in combat
with other Superhero. Certain types are especially effective against others. In order
for the members of the enumeration to express the types they are strong against,
we have introduced a HashMap to store this relations: strengthMap. This HashMap
maps a Superpower value to the Superpower value that it is strong against.

In order to only create and populate this map once, while still being able to access
them from references to the enumeration’s members, we need to make them static—
these properties need to also be marked final to indicate that they are constant and
should not be changed.

Initializing and populating the strengthMap HashMap should be done in a static
initializer. A static initializer is a block of code that runs only once when a class
declaration is first loaded by the Java Virtual Machine. This code runs after ini-
tialization of static variables at their declaration, and before anything else—you can
think of it as a constructor for the class itself, instead of a constructor for individual
instances of the class. Since a static initializer is only run once, and is only used
by Java internally, you don’t give it a name as you would with other methods, as it
cannot (and should not!) be callable by any other piece of code.

5

A static initializer is a method that looks like the following:

c l a s s Foo // Some c l a s s
{

s t a t i c // This i s the s t a t i c i n i t i a l i z e r f o r c l a s s Foo
{

. . . // Code goes here .
}

}

See table 1 on page 4 for the mappings you need to setup inside the HashMaps.

The instance methods to be implemented are as follows:

� effectiveAgainst(): This method should return the Superpower that this par-
ticular Superpower is effective against.

� toString(): This method should return, in lowercase, the name of the particular
member of the enum.

HeroInfo Class

This class contains information about a particular Superhero. This information
includes the following: the Superhero Species and the Superhero’s Superpower.

� The HeroInfo constructor takes in a Species and a Superpower, and assigns
them to the appropriate instance variables.

� getSpecies(): This method returns the Species stored in this particular in-
stance of HeroInfo.

� getSuperpower(): This method returns the Superpower stored in this partic-
ular instance of HeroInfo.

� toString(): This method should return the information stored in this particular
instance of HeroInfo in the following format:

a <SPECIES> <SUPERPOWER> type

where <SPECIES> is the Species stored in this instance, and <SUPERPOWER>
is the Superpower stored in this instance. If the Species were to be EARTH
and the Superpower to be MIND, then the output would look like the fol-
lowing:

6

a earth mind type

Note: the string ends with the ’e’ at the end of type (there is no newline character).

Superhero Enum

The Superhero enum contains a subset of the very large number of Superheroes
that exist. This enum has the following members: BATMAN (EARTH species,
STRENGTH superpower), SUPERMAN (KRYPTON species, STRENGTH super-
power), MARTIAN MANHUNTER (MARS species, MIND superpower), and FLASH
(EARTH species, SPEEDSTER superpower).

� The Superhero constructor takes in an instance of HeroInfo and stores it in
the appropriate instance variable.

� getSpecies(): This method returns the Species of the Superhero.

� getSuperpower(): This method returns the Superpower of the Superhero.

� toString(): This method returns a descriptive string of the Superhero. The
string should be in the following format:

<NAME>: a <SPECIES> <SUPERPOWER> type

where <NAME> is the name of the Superhero in lowercase, and <SPECIES>
and <SUPERPOWER> are covered in the above section detailing the Super-
hero enum. For the Superhero SUPERMAN, with a KRYPTON SPECIES
and a SUPERPOWER of STRENGTH, the returned string would look like:

superman : a krypton strength type

HeroArena Class

The HeroArena will create a map of abbreviated hero names to the superheroes. It
will provide an API with several options for getting information about these heroes.
The HeroArena is used by the Driver to interact with the user via the following
methods:

7

� The HeroArena constructor will initialize the heroMap.

� getHero(String key): this method attempts to return the hero in the heroMap
associated with the key string parameter. If an associated hero does not exist,
the method returns null.

� getHeroAbbreviations(): this method returns the set of abbreviation for all of
the superheros. This is equivalent to the keyset of the heroMap HashSet.

� listHeros(): this method returns a String containing information about the
heroes in the arena. It iterates through the list of heroes; for each hero the
output String includes a line with the format:

<Abbreviation> − <Hero Description>.

Take note that the heroMap HashSet is actually a LinkedHashSet. This is done
to ensure that the order of accessing the list iteratively stays the same every
time. A standard HashSet will be in a random order when accessing iteratively.

� battleHeroes(Superhero heroA, Superhero heroB): this method is used to de-
termine which hero would win in a fight. We select the victor by comparing
superpower types. If heroA’s superpower is strong against heroB’s superpower,
then heroA will win (and heroA will be returned). Likewise, if heroB’s super-
power is strong against heroA’s, then heroB will win. If neither power is strong
against the other (powers are the same in this case), the method will return
null.

Driver Class

The Driver class will create a HeroArena object and use it to process the user’s
queries. It will present the user with an option to choose a pair of Superheroes to
battle against one-another or to print information about all of the Superheroes. If
the user opts to choose specific Superheroes to fight, then your program will print
the information for the result of that battle. If the user opts for the list, then all of
the Superheroes in the HeroArena are presented to the user.

8

� Main menu:

As master of the intergalactic arena , you may choose two superheroes to ←↩
fight against each other . You may also view their hero information .

Please select an option :
1 : Choose two Superheroes to battle

2 : List all Superhero

� Superhero selection menu:

Please choose from the following Superheroes : [BAT , SUP , MAR , FLS]

Note: Sets are unordered. However, the arena class uses a LinkedHashSet,
which ensures that the order is the same every time that elements are accessed
iteratively.

The program uses a BufferedReader to take in the input. The code must be able
to handle any input that the user could choose, e.g. numbers other than 1 and 2,
letters, Superheroes not listed, etc. If incorrect input is given, then your program
must re-prompt until a correct input is given.

Once all of the necessary information is obtained from the user, your program
must print the report about the results of the battle between the chosen Superheroes
(or all Superheroes) and exit.

9

Example Interactions

As master of the intergalactic arena , you may choose two superheroes to fight ←↩
against each other . You may also view their hero information .

Please select an option :
1 : Choose two Superheroes to battle

2 : List all Superhero

1
Please choose from the following Superheroes : [BAT , SUP , MAR , FLS]
BAT

You choose batman : a earth strength type .
Please choose another hero from the following Superheroes : [BAT , SUP , MAR , FLS]
MAR

You choose martian_manhunter : a mars mind type .
martian_manhunter was the victor !

As master of the intergalactic arena , you may choose two superheroes to fight ←↩
against each other . You may also view their hero information .

Please select an option :
1 : Choose two Superheroes to battle

2 : List all Superhero

2
BAT − batman : a earth strength type .
SUP − superman : a krypton strength type .
MAR − martian_manhunter : a mars mind type .
FLS − flash : a earth speedster type

Final Steps

1. Generate Javadoc using Eclipse.

� Select Project/Generate Javadoc...

� Make sure that your project (and all classes within it) is selected

� Select Private visibility

� Use the default destination folder

� Click Finish.

2. Open the lab8/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that that all of your classes are listed and that all of your documented
methods have the necessary documentation.

10

3. If you complete the above instructions during lab, you may have your imple-
mentation checked by one of the TAs.

Submission Instructions

Before submission, finish testing your program by executing your unit tests. If your
program passes all tests and your classes are covered completely by your test classes,
then you are ready to attempt a submission. Here are the details:

� All required components (source code and compiled documentation) are due
at 7pm on Monday, October 16. Submission must be done through the
Web-Cat server.

� Use the same submission process as you used in lab 1. You must submit your
implementation to the Lab 8: Enumerated Types and Hashmaps area on the
Web-Cat server.

Hints

� In Eclipse, EclEmma will flag your enums as being incomplete in their coverage.
If it is flagging the very top of your enum files (and nothing else), this is okay.
Web-Cat will not be this strict in its code coverage testing.

11

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 40 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against a set of tests (called Unit Tests). These unit tests will
not be visible to you, but the Web-Cat server will inform you as to which tests
your code passed/failed. This grade component is a product of the fraction of
our tests that your code passes and the fraction of your code that is covered
by your tests. In other words, your submission must perform well on both
metrics in order to receive a reasonable grade.

Style/Coding: 25 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader (typically sometime after the lab
deadline). Any errors in your program will be noted in the code stored on
the Web-Cat server, and two points will be deducted for each. Possible errors
include:

� Non-descriptive or inappropriate project- or method-level documentation
(up to 10 points)

� Missing or inappropriate inline documentation (2 points per violation; up
to 10 points)

� Inappropriate choice of variable or method names (2 points per violation;
up to 10 points)

� Inefficient implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

� Incorrect implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

12

If you do not submit compiled Javadoc for your project, 5 points will be de-
ducted from this part of your score.

Note that the grader may also give warnings or other feedback. Although
no points will be deducted, the issues should be addressed in future submis-
sions(where points may be deducted).

Bonus: up to 5 points

You will earn one bonus point for every two hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose ten points for every minute that your assignment is submitted
late. For a submission to be considered on time, it must arrive at the server by
the designated minute (and zero seconds). For a deadline of 9:00, a submission
that arrives at 9:00:01 is considered late (in this context, it is one minute late).

After 15 submissions to Web-Cat, you will be penalized one point for every
additional submission.

For labs, the server will continue to accept submissions for three days after the
deadline. In these cases, you will still have the benefit of the automatic feedback.
However, beyond ten minutes late, you will receive a score of zero.

The grader will make their best effort to select the submission that yields the
highest score.

13

