
CS 2334
Project 4: Graphical User Interfaces

October 28, 2017

Due: 1:29:00 pm on Monday, Nov 13, 2017

Introduction

For the last three projects, you have been focused on reading data from files and
constructing large, efficient representations from the data. For this project, we will
focus on presenting these data to a user, enabling the user to explore the statistics
associated with specific field and subfield names, and weeks.

Your implementation from project 3 will continue to serve as the basis for data
loading and representation (with minimal changes). What you will add is a graphical
user interface that interacts with the user.

Your final product will:

1. Allow the user to specify an infant whose files can be loaded.

2. Allow the user to select one or more weeks of interest, a field and a subfield.

3. Report detailed information about the specified field/subfield, as well as the
minimum, maximum and average over the specified weeks.

Learning Objectives

By the end of this project, you should be able to:

1. Create a menu that is attached to a frame.

1

2. Make use of JLists that present a set of options to a user and allow the user to
select one or more of these options

3. Create a set of components that display textual data to a user

4. Create the listeners necessary to allow the GUI to respond to user input

5. Continue to exercise good coding practices for Javadoc and for testing

Note that this project relies heavily on your reading of the Java API documenta-
tion, and the examples. We have tried to provide you with a good set of hints, but,
fundamentally, you have to pull the details out of the documentation.

Proper Academic Conduct

This project is to be done in the groups of two that we have assigned. You are to
work together to design the data structures and solution, and to implement and test
this design. You will turn in a single copy of your solution. Do not look at or discuss
solutions with anyone other than the instructor, TAs or your assigned team. Do not
copy or look at specific solutions from the net.

Strategies for Success

� The UML is a guide to the new classes and methods that you will implement.

� When you are implementing a class or a method, focus on just what that
class/method should be doing. Try your best to put the larger problem out of
your mind.

� We encourage you to work closely with your other team member, meeting in
person when possible.

� Start this project early. In most cases, it cannot be completed in a day or two.

� Implement and test your project components incrementally. Don’t wait until
your entire implementation is done to start the testing process. Note that it
is very challenging to write JUnit tests for GUIs – we do not expect you to
provide these here. However, we do expect that you will provide unit tests
for the “back-end” of your code and that you will test your GUI in person

2

(the Driver and InfantFrame classes and associated inner classes). These
back-end tests must cover the code in your remaining classes.

� Write your documentation as you go. Don’t wait until the end of the imple-
mentation process to add documentation. It is often a good strategy to write
your documentation before you begin your implementation.

Preparation

� This description and supporting materials are available at:
http://cs.ou.edu/~fagg/classes/cs2334/projects/project4

� We will be providing parts of our project 3 implementation on Canvas.

� In Eclipse, copy your project3 folder to a new project4 project.

� The data will be the same as for the last project. The data that we provided
in project 3 must be located in the data directory. Any custom data that you
use for testing must be in a different directory (e.g., mydata).

� Download project4.zip from the project directory. This zip file contains a
partial implementation of the InfantFrame class. Copy this file into your src
directory.

Example Interactions

Below is a set of screen-shots for our implementation. Your implementation may
have a different look. However, it must have the essential functionality, as described
in the next section.

3

http://cs.ou.edu/~fagg/classes/cs2334/projects/project4

When your program starts up, it will create the GUI, but not populate it with
any information:

� A file menu is presented in the upper-left corner of the window.

� The green area contains three list interfaces that allow the user to select a set
of trials, a field name and a subfield name. Only one field and subfield may be
selected at any one time. However, any combination of trials.

� The purple area displays the infant ID, selected field, selected subfield name,
and the maximum, average and minimum for the selected field, subfield and
trials. For the minimum and maximum values, the week and time are also
shown.

4

When the file menu is selected, the full menu opens:

If Exit is selected, then the program exits (by calling System.exit(0)).
If Open Configuration File is selected, then a file chooser is opened:

� The file chooser opens by default the data directory and shows only files with
the dat extension.

� These dat files do not have any content; they only indicate the Infant IDs that
are available in the corresponding directory.

� If the user selects one of these dat files, then your program will load the selected
infant. While the data are loading, the cursor changes to an animated clock to
indicate that your program is busy. This can be accomplished by setting the
Frame’s cursor to: Cursor.getPredefinedCursor(Cursor.WAIT CURSOR).

5

� If the specified file does not correspond to an existing infant, your program
should open an error window. This can be accomplished using JOption-
Pane.showMessageDialog()

� If an Exception is thrown while loading the file, then your program should also
open an error window.

Here is one example of an error window:

6

After loading, your program will display the set of available weeks and field names.

After selecting a field name, the available subfields are displayed. By default, the first
subfield is selected. In the data panel, the selected field and subfield are displayed.
However, since no trials are yet selected, there are no statistics that can be computed.
Hence, “n/a” is shown for all statistics.

7

Specific trials can be selected. When this happens, then the statistics for the specified
field and subfield names are shown for the selected trials. The displayed values are
provided by the toString() methods that you have already implemented:

Another example with multiple trials selected:

8

Another example with a different data set:

And a few other examples:

9

10

When a scalar field (a field with one subfield) is selected, then the text “scalar”
appears in place of the empty string. Note that this must be translated into the
empty string within the statistics computation component of the code.

11

GUI Layout

Below is a sketch of our GUI layout. Here, we are describing the key GUI components
and their approximate layout. Implicit in the way we have drawn things is also a
containment relationship. Some of the relevant instance variables are also listed.

JLabel:
averageFieldValue

JLabel:
maxWeekLabel

JTextField:
maxValueField

JLabel:
subfieldNameLabel

InfantFrame

FileMenuBar

SelectionPanel DataPanel

JList: trialList

JLabel:
trialLabel

JScrollPane:
trialListScroller

JList: fieldList

JLabel:
fieldLabel

JScrollPane:
fieldListScroller

JList: subfieldList

JLabel:
subfieldLabel

JScrollPane:
subfieldListScroller

JLabel:
infantIDLabel

JTextField:
infantIdField

JTextField:
subfieldNameField

JLabel:
maxLabel

JTextField:
maxWeekField

JLabel:
averageLabel

JMenu JMenuItem JMenuItem

JLabel:
fieldNameLabel

JTextField:
fieldNameField

JLabel:
maxTimeLabel

JTextField:
maxTimeField

JLabel:
minWeekLabel

JTextField:
minValueField

JLabel:
minLabel

JTextField:
minWeekField

JLabel:
minTimeLabel

JTextField:
minTimeField

The different components in this layout are as follows:

� The InfantFrame contains three main components: a FileMenuBar, a Se-
lectionPanel and a DataPanel.

� The FileMenuBar contains a single JMenu, which, in turn, contains two
JMenuItems. The first menu item is used for opening files; the other is for
exiting the program.

� The SelectionPanel contains a grid of sub-components: the rows correspond
to the trial, field name and subfield name. The first column contains the labels,
while the second column contains a set of JLists that we will use for selection.
Note that each JList is contained within a JScrollPane. These scroll panes
allow us to have a JList than will always fit within the allotted space. Should
a list be too large, the JScrollPane will automatically show a scroll bar on
the right hand side of the list.

12

� The DataPanel presents information according to what the user has selected
in a grid format (though the figure above does not show the components in a
grid). Labels are placed in odd columns in this grid, while data are presented
in JTextFields in even columns.

UML Design

You will adopt your implementation from project 3 with minimal changes. Below
are the new classes that you will be implementing/modifying for this project. In
addition, changes to existing classes are highlighted.

Trial

...
-fieldMapper:FieldMapper
...

...
+toString():String
+getFieldMapper():FieldMapper
...

I terable<Trial>

Infant

...

...
+Infant(infant:Infant, indices:int[])
+iterator(): I terator<Trial>
...

JMenuBar

JPanel

JFrame

Driver

+main(args:String[]):void

DataPanel

-infantIDLabel:JLabel
-fieldNameLabel:JLabel
-subfieldNameLabel:JLabel
-maxLabel:JLabel
-maxWeekLabel:JLabel
-maxTimeLabel:JLabel
-averageLabel:JLabel
-minLabel:JLabel
-minWeekLabel:JLabel
-minTimeLabel:JLabel
		
-infantIDField:JTextField
-fieldNameField:JTextField
-subfieldNameField:JTextField
-maxValueField:JTextField
-maxWeekField:JTextField
-maxTimeField:JTextField
-minValueField:JTextField
-minWeekField:JTextField
-minTimeField:JTextField
-averageValueField:JTextField

+DataPanel()
+update(infantID:String, fieldName:String,
 subfieldName:String, maxState:String,
 maxStateWeek:String, maxStateTime:String,
 minState:String, minStateWeek:String,
 minStateTime:String, average:String)

FileMenuBar

-menu:JMenu
-menuOpen:JMenuItem
-menuExit:JMenuItem
-fileChooser:JFileChooser

+FileMenuBar()

SelectionPanel

-trialList:JList<String>
-fieldList:JList<String>
-subfieldList:JList<String>

-trialListModel:DefaultListModel<String>
-fieldListModel:DefaultListModel<String>
-subfieldListModel:DefaultListModel<String>

-trialScroller:JScrollPane
-fieldScroller:JScrollPane
-subfieldScroller:JScrollPane

-trialLabel:JLabel
-fieldLabel:JLabel
-subfieldLabel:JLabel
-fieldMapper:FieldMapper

+SelectionPanel()
+updateSelections():void
+updateSubfieldSelections():void

InfantFrame

-selectionPanel:SelectionPanel
-dataPanel:DataPanel
-infant:Infant
-COLUMN_FIELD_WIDTH:int

+InfantFrame()
+loadData(directory:String, infantID:String):void
+update():void

*

1

«inner»
1

«inner»
1

«inner»

1

Class Design Outline

Here are the key changes to your project 3 code:

� Add a new constructor to your Infant class that takes as input an existing

13

infant and an array of indices. This new Infant will have the same infantID,
but will have a subset of the original Infant’s Trials. This subset is defined
by the array of indices. Any illegal indices should be ignored. Note: do not
clone the underlying trials; instead, this new infant should reference the
trials in the original infant.

� The Infant class now implements Iterable<Trial>.

� The Trial class now implements toString(). Here is an example of the required
format:

”Week 03”

This class also now explicitly stores a copy of the FieldMapper as an instance
variable, which is returned by the getFieldMapper() method.

� Add JUnit tests for the above changes.

Below are the implementation notes for our Graphical User Interface. Note that any
method called directly or indirectly by the graphics subsystem can be called at a
time when the graphical Components are in a state in transition. For example, when
a DefaultListModel is updated with a new list of items, the list is typically first
cleared and then the new items are added one-by-one. It is possible for the associated
listeners to be called in the middle of this process. It is therefore important these
listeners and the methods that they call are robust to situations where the model
may not be in its final state (e.g., a model could be empty). You will need to include
code that detects these types of situations.

� For this project, we are using GridBagLayout as the layout manager for our
frames and panels.

� InfantFrame: this class is-a JFrame and is the primary window of the inter-
face.

– Complete the implementation of the constructor

– Complete the implementation of loadData(). This method creates a new
Infant and then causes the selectionPanel to update with the new trial/-
field/subfield options. Note that this method is declared as being synchro-
nized. While this keyword is beyond the scope of this class, you should

14

leave it in place. In short, this keyword ensures that only one thread will
call this method or the update() at any instant in time.

– Complete the implementation of update(). This method extracts selection
information from the selection panel, computes the statistics using the
selected values, and informs the data panel that it needs to refresh its
display.

� FileMenuBar is an inner class of InfantFrame that is-a JMenuBar.

– Complete the menu creation process

– Complete the implementation of the open menu listener

� SelectionPanel is an inner class that is-a JPanel that presents the elements
through which the user will select the trials, field name and subfield name.
This class contains a JList for each selection type.

– In the constructor, complete the creation of the JLists. Each has its own
DefaultListModel and JScrollPane

– In the constructor, implement the layout of the components and the as-
sociated listeners

– Complete the implementation of updateSelections(). This method is called
any time the entire selection panel must be redrawn with new data from
an Infant

– Complete the implementation of updateSubfieldSelections(). This method
is called any time the subfield selection section of the panel must be re-
drawn with new information.

� DataPanel is an inner class that is-a JPanel that displays the selected infor-
mation and the associated statistics.

– Complete the creation of the JTextFields

– Implement the layout of the components

– Complete the implementation of the update() method.

Notes

� Build your GUI incrementally. Focus on the “look and feel” of your GUI before
you add functionality. Then, add functionality one piece at a time.

15

� The use of multiple classes to represent the GUI gives us the opportunity
to logically partition the problem into smaller pieces. Because these pieces are
largely independent of one-another, this allows us to keep the complexity down.

� By setting up all of these classes (but one) as inner classes of a larger frame
class, this allows us to easily handle the dependencies between the various GUI
classes. In particular, inner classes have the ability to access variables and
methods of the outer class, even when they are private. For example, an inner
class can refer to the outer class instance using:

InfantFrame.this

and, hence, access variables and call methods using:

InfantFrame.this.selectionPanel

or

InfantFrame.this.setCursor()

� JMenuItems have ActionListeners attached to them to implement the func-
tionality of selecting a menu item.

� We create a reference to your data directory this way:

new File(”./data”)

� JLists present a list of items to the user and allow the user to select one (or
possibly more). See the reference section below for a useful link that talks
about many options.

When the items in the list are known a priori and won’t change, the simple
way to create a JList is to hand it an array of Strings – one for each item. You
can then tell the JList to select the first item in the list automatically:

setSelectedIndex(0)

A SelectionListener can then be added to respond to any change in what is
selected. A change can be either the deselection of an item or the selection of
an item (note that most “clicks” involve a sequence of deselection followed by
selection). The currently selected element (if we assume that there is only one)
can be read from the JList using getSelectedValue().

If a JList allows you to select more than one item, you can access the list of
indices (in the presented list) using getSelectedIndices().

16

When the items are not known a priori or will change with time (as is the case
for all of our JLists), which we won’t know until we have loaded the data), we
must use some form of ListModel. The DefaultListModel class is a List
to which items can be added or cleared from. Every time this list changes,
the DefaultListModel will automatically inform the JList that the list has
changed, which, in turn, will cause the display to be updated. To attach a
ListModel to a JList, you include a reference to the model in your call to the
JList constructor (there is an example in the code).

You will need to look carefully at the JList settings in order to get each of the
JLists to display information in the correct way.

� Each JList is placed inside of a JScrollPane. This tells the GUI to use a
fixed size pane to present the information, but to provide scroll bars if the
information is too large to display in the fixed area. If the information fits,
then the scroll bar is automatically hidden.

� JTextFields, by default, are about receiving text input from a user. However,
they can be used as output-only components by setting their editable property
to false. They are convenient for this because we can define their width in terms
of the number of characters that they should hold. And, the text presented
in the field can be selected and copied by a user through the use of mouse
operations.

� Real-time grading will be much slower with this project and the next. Please
plan accordingly.

� Depending on server load, real-time grading of submissions may be halted at
any time. Our priority is to let groups submit solutions in a timely fashion. If
we do halt online grading, we will attempt to reenable it at a time where the
load on the server is low. This means that you should not expect feedback on
solutions that are submitted near to the deadline.

Final Steps

1. Generate Javadoc using Eclipse for all of your classes.

2. Open the project4/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that all of your classes are listed and that all of your documented methods
have the necessary documentation.

17

Submission Instructions

� All required components (source code and compiled documentation) are due
at 1:29:00 pm on Monday, November 13.

� Submit your project to Web-Cat using one of the two procedures documented
in the Lab 1 specification.

Grading: Code Review

All groups must attend a code review session in order to receive a grade for your
project. The procedure is as follows:

� Submit your project for grading to the Web-Cat server.

� Any time following the submission, you may do the code review with the in-
structor or one of the TAs. For this, you have two options:

1. Schedule a 15-minute time slot in which to do the code review. We will
use Doodle to schedule these (a link will be posted on Canvas). You
must attend the code review during your scheduled time. Failure to do
so will leave you only with option 2 (no rescheduling of code reviews is
permitted). Note that schedule code review time may not be used for
help with a lab or a project

2. “Walk-in” during an unscheduled office hour time. However, priority will
be given to those needing assistance in the labs and project

� Both group members must be present for the code review

� During the code review, we will discuss all aspects of the rubric, including:

1. The results of the tests that we have executed against your code

2. The documentation that has been provided (all three levels of documen-
tation will be examined)

3. The implementation. Note that both group members must be able to
answer questions about the entire solution that the group has produced

18

� If you complete your code review before the deadline, you have the option of
going back to make changes and resubmitting (by the deadline). If you do this,
you may need to return for another code review, as determined by the grader
conducting the current code review

� The code review must be completed by Monday, November 20th to receive
credit for the project.

References

� The Java API: https://docs.oracle.com/javase/8/docs/api/

� JLists: https://docs.oracle.com/javase/tutorial/uiswing/components/
list.html

� JFileChooser: https://docs.oracle.com/javase/tutorial/uiswing/components/
filechooser.html

� Menus: https://docs.oracle.com/javase/tutorial/uiswing/components/
menu.html

19

https://docs.oracle.com/javase/8/docs/api/
https://docs.oracle.com/javase/tutorial/uiswing/components/list.html
https://docs.oracle.com/javase/tutorial/uiswing/components/list.html
https://docs.oracle.com/javase/tutorial/uiswing/components/filechooser.html
https://docs.oracle.com/javase/tutorial/uiswing/components/filechooser.html
https://docs.oracle.com/javase/tutorial/uiswing/components/menu.html
https://docs.oracle.com/javase/tutorial/uiswing/components/menu.html

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 40 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against a set of tests (called Unit Tests). These unit tests will
not be visible to you, but the Web-Cat server will inform you as to which tests
your code passed/failed. This grade component is a product of the fraction of
our tests that your code passes and the fraction of your code that is covered
by your tests. In other words, your submission must perform well on both
metrics in order to receive a reasonable grade.

Style/Coding: 25 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader (typically sometime after the project
deadline). Any errors in your program will be noted in the code stored on
the Web-Cat server, and two points will be deducted for each. Possible errors
include:

� Non-descriptive or inappropriate project- or method-level documentation
(up to 10 points)

� Missing or inappropriate inline documentation (2 points per violation; up
to 10 points)

� Inappropriate choice of variable or method names (2 points per violation;
up to 10 points)

� Inefficient implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

� Incorrect implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

20

If you do not submit compiled Javadoc for your project, 5 points will be de-
ducted from this part of your score.

Note that the grader may also give warnings or other feedback. Although
no points will be deducted, the issues should be addressed in future submis-
sions(where points may be deducted).

Bonus: up to 5 points

You will earn one bonus point for every twelve hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose five points for every twelve hours that your assignment is sub-
mitted late. For a submission to be considered on time, it must arrive at the
server by the designated minute (and zero seconds). For a deadline of 9:00, a
submission that arrives at 9:00:01 is considered late. Assignments arriving 48
hours after the deadline will receive zero credit.

After 30 submissions to Web-Cat, you will be penalized one point for every
additional submission.

Web-Cat note: 24 hours before the deadline, the server will stop
giving hints about any failures of your code against our unit tests.
If you wish to use these hints for debugging, then you must complete your
submissions 24 hours before the deadline.

21

