
CS 2334
Project 5: Java Graphics

November 13, 2017

Due: 6:00 pm on Friday, Dec 1, 2017

Introduction

In project 4, you created a graphical user interface that interacts with a user and dis-
plays statistics about infant kinematic data. This project will extend your experience
into the realm of graphics. In particular, you will display the state of the infant using
a skeletal representation, projected into three two-dimensional views. By changing
the state in time, you will also animate this representation. Your implementation
from the prior projects will serve as important components for this project.

Your final product will:

1. Allow the user to specify an infant, whose data are to be loaded,

2. Allow the user to select one of the available weeks associated with the infant,

3. Allow the user to specify a time within the week to render,

4. Render a top, side and rear view of the infant’s skeleton, and

5. Animate the skeleton by rendering successive states.

Learning Objectives

By the end of this project, you should be able to:

1. Create a tree data structure for representing a kinematic tree,

1

2. Create a class for flexibly transforming 3D data into a 2D picture,

3. Use JSliders to accept input,

4. Use Timers to create animations, and

5. Continue to exercise good coding practices for Javadoc and for testing.

Proper Academic Conduct

This project is to be done in the groups of two that we have assigned. You are to
work together to design the data structures and solution, and to implement and test
this design. You will turn in a single copy of your solution. Do not look at or discuss
solutions with anyone other than the instructor, TAs or your assigned team. Do not
copy or look at specific solutions from the net.

Strategies for Success

� The UML is a guide to the new classes and methods that you will implement.

� When you are implementing a class or a method, focus on just what that
class/method should be doing. Try your best to put the larger problem out of
your mind.

� We encourage you to work closely with your other team member, meeting in
person when possible.

� Start this project early. In most cases, it cannot be completed in a day or two.

� Implement and test your project components incrementally. Don’t wait until
your entire implementation is done to start the testing process.

� Write your documentation as you go. Don’t wait until the end of the imple-
mentation process to add documentation. It is often a good strategy to write
your documentation before you begin your implementation.

2

Preparation

� This description and supporting materials are available at:
http://cs.ou.edu/~fagg/classes/cs2334/projects/project5

� In Eclipse, copy your project4 folder to a new project5 project. Within this
project, our data should be located in the data directory. Any custom data
that you use for testing should be placed in the mydata directory.

� We provide a partial implementation of KinematicPanel. Place this java file
in your default package.

� We will be providing a partial implementation of InfantFrame and its inner
classes after the project 4 deadline +48 hours. Place this java file in your
default package.

Example Interactions

Below is a set of screen-shots for our implementation. Your implementation will look
very similar. And, the data that you display must match our implementation. Here
is the initial state of the interface:

3

http://cs.ou.edu/~fagg/classes/cs2334/projects/project5

After loading infant k2, and selecting Week 06, the interface will appear as follows:

In the State representation that you have developed, you represent the x/y/z
position of many points on the infant body. The top view shows the locations of
these points in the x/y plane. In this view, the arms are displayed to the right of
the panel, with the left arm pointing toward the top of the panel. The ankles and
tips of the feet are shown to the left of the panel.

The side view displays the 3D points in the x/z plane. This view also renders
the arms to the right of the panel, but shows the feet pointing to the bottom of the
panel.

The rear view displays the 3D points in the y/z plane. This view displays the
left arm and leg on the left of the panel and the right arm and leg on the right.

4

The time step slider can be used to select the State to be rendered (here, we are
showing time step 2000):

Here is time step 4309:

5

And time step 11693:

And time step 14254:

6

And time step 14999 (the last available step):

When Week 7 is selected, the rendered trial changes and the current time changes
automatically to time step 0:

7

Here is time step 7974:

And here is Week 10, time step 10875:

When the Start button is pressed, the button text switches to Stop, and time
begins to increment automatically once every 5 milliseconds. With each change of
time, the display is updated, giving us an animation of how the infant behaved
during the trial. If the Stop button is pressed or time reaches the end of the trial,
time ceases to increment and the button text returns to Start.

8

Representing Infant Kinematics

A kinematic tree represents a robot or biological body using rigid links (lines) con-
nected by (possibly) movable joints. The figure below shows a top view of our infant
kinematic model. Each of the red points correspond to specific points on the infant
body. When two or more links are connected by a point, then the point is a proper
joint.

The root of our kinematic tree is located at the origin of our three dimensional
space (x = 0; y = 0; z = 0). This root point is connected to three other points
through fixed relationships: the lower back is always located at x = 0.1; y = 0; z = 0,
and the left and right hip socket joints are located at x = 0; y = 0.05; z = 0 and
x = 0; y = −0.05; z = 0, respectively. We refer to these three points as the children
of the root point.

The lower back is connected to one other point: the upper back. Hence, the lower
back has one child point. The location of this point is variable, and is captured in a
single State object.

The upper back has two children: the left shoulder and right shoulder.
The right shoulder has one child: the right elbow. This point has one child: the

right wrist. The right wrist has no children.

9

Rendering a Kinematic Tree

In this project, we will not worry about rendering our three-dimensional kinematic
tree in three dimensions. Instead, your interface will present a set of simple two-
dimensional projections of the three-dimensional data. For the top view of the infant,
we will “throw away” the z dimension of the data and use only the x and y dimensions.
Specifically, we will use the x dimension of the data to determine the x coordinate
on the screen and the y dimension of the data to determine the y coordinate on the
screen.

Note that in making this transformation from the three-dimensional data (which
are measured using meters), we must also account for 1) the transformation from
meters to pixels, and 2) we must flip the sign of the y pixel coordinate in order to
account for the fact that we are moving from a right-handed coordinate frame to a
left-handed one.

Rendering of a kinematic tree begins at its root point. The algorithm is as follows:

1. For the current point, extract the dimensions that correspond to the x and y
screen coordinates.

2. For every child point:

(a) Extract its dimensions that correspond to the x and y screen coordinates.

(b) If all four of the values are valid (two values each from this point and the
child), then transform the values into pixel coordinates and draw a line
between the two points. For our work, we will use a BasicStroke to draw
the line segment.

(c) Recursively draw the child point (Step #1).

10

UML Design

Below is the UML diagram that emphasizes the classes that have changed since
project 4.

JMenuBar

JFrame

FileMenuBar

-menu:JMenu
-menuOpen:JMenuItem
-menuExit:JMenuItem
-fileChooser:JFileChooser

+FileMenuBar()

DataPanel

-rootPoint:KinematicPointAbstract
-viewPanel:JPanel
-topViewPanel:KinematicPanel
-sideViewPanel:KinematicPanel
-rearViewPanel:KinematicPanel
-textPanel:JPanel
-infantTextField:JTextField
-timeTextField:JTextField

-timeSlider:JSlider
-currentTime:int
-runButton:JButton
-timePanel:JPanel
-timer:Timer
-FIELD_WIDTH:int
-LINE_WIDTH:int

+DataPanel()
+setTime(newTime:int)
+update(state:State)
+createKinematicModel():KinematicPointAbstract

SelectionPanel

-trialList:JList<String>
-trialListModel:DefaultListModel<String>
-trialScroller:JScrollPane
-trialLabel:JLabel

+SelectionPanel()
+updateSelections():void

InfantFrame

-selectionPanel:SelectionPanel
-dataPanel:DataPanel
-infant:Infant
-trial:Trial // NEW
-COLUMN_FIELD_WIDTH:int
-FONT:Font // NEW

+InfantFrame()
+loadData(directory:String, infantID:String):void
+update():void

JPanel

KinematicPanel

-flipX:double
-flipY:double
-screenXSubfield:String
-screenYSubfield:String
-rootPoint:KinematicPointAbstract
-state:State
-title:String
-FONT:Font

+KinematicPanel(rootPoint:KinematicPointAbstract,
 flipX:double, flipY:double, screenXSubfield:String,
 screenYSubfield:String, title:String)
+setState(state:State):void
#paintComponent(g:Graphics):void

KinematicPointState

-fieldName:String

+KinematicPointState(color:Color, width:float,
 fieldName:String)
+getScreenCoordinate(state:State,
 screenSubfield:String):GeneralValue

KinematicPointConstant

-point:PointND

+KinematicPointConstant(color:Color, width:float,
 x:double, y:double, z:double)
+getScreenCoordinate(state:State,
 screenSubfield:String):GeneralValue

KinematicPointAbstract

-children:ArrayList<KinematicPointAbstract>
-color:Color
-stroke:BasicStroke
-scale:double

+KinematicPointAbstract(color:Color, width:float)
+addChild(child:KinematicPointAbstract):void
+draw(g:Graphics2D, state:State,
 screenXSubfield:String, screenYSubfield:String):void
+setScale(scale:double):void
+getScreenCoordinate(state:State,
 screenSubfield:String):GeneralValue

«inner»
1

«inner» 1

«inner»

1

3

1

The colors denote classes that: we provide in their entirety (white), we provide
partial implementations for (blue) and that you implement yourself (gray). As the
InfantFrame class and its inner classes will not be made available until after the
project 4 deadline + 48 hours, we suggest that you start your implementation with
the KinematicPoint* classes.

Not shown are the “back-end” classes that you developed for project 3 (and made

11

slight modifications for project 4).

Class Design Outline

KinematicPointAbstract is an abstract class that provides a majority of the ma-
chinery for rendering two-dimensional projections of three-dimensional kinematic
trees. Each instance of this class is defined by a list of children, and a color and a
stroke to be used for drawing line segments from the point to its children. There
is also a scale class variable that defines the relationship between meters (infant
coordinates) and screen pixel size. The key methods are:

� addChild() adds a new KinematicPointAbstract object as a child object

� draw() takes as input a Graphics2D context, a State to render and the sub-
field names that are mapped to the screen x and y dimensions. The algorithm
for rendering by this method is described above

� The abstract getScreenCoordinate() method requires implementing classes to
provide a method that will return the GeneralValue that corresponds to the
specified subfield name

KinematicPointConstant represents a point whose location does not change
with time (i.e., it is independent of State). The constructor takes as input the
constant values for the x, y and z dimensions.

KinematicPointState represents a point whose location is defined by a specific
field of a State object.

KinematicPanel is a JPanel that renders a single view of a kinematic tree.
The properties are:

� screenXsubfield and screenYsubfield are Strings that define the subfields to be
used for the screen x direction and the screen y direction, respectively

� flipX and flipY can take on the values +1 or −1, and indicate whether positive
values in infant coordinates correspond to positive (+1) or negative (−1) values
in screen coordinates

� rootPoint is the root of the kinematic tree to be rendered by the panel

� state is the State object that is used for rendering

� title is the title of the panel that is placed in the upper left corner of the panel

12

� font is the font to be used to render the title

The key methods are:

� setState() sets the state to be rendered and then forces a repaint of the panel

� paintComponent() renders the entire panel, including the title and the kine-
matic tree. Note that in the partial implementation that we provide, the origin
of the kinematic panel is translated from the upper left corner to the center
of the panel and the directions for drawing are flipped according to flipX and
flipY

InfantFrame.DataPanel displays information based on the selected trial and
the currentTime. The key properties are:

� rootPoint is the root of the kinematic tree

� viewPanel is the panel that contains all kinematic views

� *ViewPanel are specific KinematicPanels

� textPanel is a panel that contains information about the loaded infant ID (in-
fantTextField) and current time (timeTextField)

� timePanel is a panel that contains the start/stop button (runButton) and a
slider for specifying the current time (timeSlider). We will also use the slider
to show the current time

� currentTime is an int that represents the current time step that is being ren-
dered

� timer is a Timer object that drives the animation of the kinematic figure by
regularly incrementing the currentTime

� FIELD WIDTH is the width of the text fields

� LINE WIDTH is the width of the line segments in the kinematic panels.

The key methods/pieces that you must implement are:

� runButton action listener. In response to a button press and the current
start/stop state of the button, change the state of the button and the timer

13

� timer action listener. Sets the currentTime to one value higher than its current
value

� setTime() takes as input a potentially new current time. If a trial exists and the
new time falls within the valid range, then change the currentTime and cause
the dataPanel to update with the new state. If the new time falls outside of
the valid range, then ensure that the timer is not running and that the button
is in the appropriate state

� update() takes as input a new State and forces all of the components of the
dataPanel to redraw with the new state information

� createKinematicModel() creates the full kinematic model for the infant

14

Testing

� You must continue to test all of your “back-end” classes from project 4, but
no new testing of the back-end is required.

� Because the new classes that you will implement involve graphics, you are not
required to test these classes using JUnit tests. However, you must test these
classes by interacting with your GUI.

� We will test both your front-end and back-end code automatically on Web-Cat.

Notes

� Spend some time with the Java API for the following classes: Graphics2D,
Line2D.Double, BasicStroke, and Timer.

Final Steps

1. Generate Javadoc using Eclipse for all of your classes.

2. Open the project5/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that all of your classes are listed and that all of your documented methods
have the necessary documentation.

Submission Instructions

� All required components (source code and compiled documentation) are due
at 6:00:00 pm on Friday, December 1st.

� Submit your project to Web-Cat using one of the two procedures documented
in the Lab 1 specification.

Grading: Code Review

All groups must attend a code review session in order to receive a grade for your
project. The procedure is as follows:

15

� Submit your project for grading to the Web-Cat server.

� Any time following the submission, you may do the code review with the in-
structor or one of the TAs. For this, you have two options:

1. Schedule a 15-minute time slot in which to do the code review. We will
use Doodle to schedule these (a link will be posted on Canvas). You
must attend the code review during your scheduled time. Failure to do
so will leave you only with option 2 (no rescheduling of code reviews is
permitted). Note that schedule code review time may not be used for
help with a lab or a project

2. “Walk-in” during an unscheduled office hour time. However, priority will
be given to those needing assistance in the labs and project

� Both group members must be present for the code review

� During the code review, we will discuss all aspects of the rubric, including:

1. The results of the tests that we have executed against your code

2. The documentation that has been provided (all three levels of documen-
tation will be examined)

3. The implementation. Note that both group members must be able to
answer questions about the entire solution that the group has produced

� If you complete your code review before the deadline, you have the option of
going back to make changes and resubmitting (by the deadline). If you do this,
you may need to return for another code review, as determined by the grader
conducting the current code review

� The code review must be completed by Friday, December 8th to receive credit
for the project.

16

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 40 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against a set of tests (called Unit Tests). These unit tests will
not be visible to you, but the Web-Cat server will inform you as to which tests
your code passed/failed. This grade component is a product of the fraction of
our tests that your code passes, the fraction of your code that is covered by
your tests and the fraction of your tests that your code passes. In other words,
your submission must perform well on all three metrics in order to receive a
reasonable grade.

Note that Web-Cat only provides an estimate of the correctness score. If your
code is throwing Exceptions, then the correctness score can be overestimated.

Style/Coding: 25 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader (typically sometime after the project
deadline). Any errors in your program will be noted in the code stored on
the Web-Cat server, and two points will be deducted for each. Possible errors
include:

� Non-descriptive or inappropriate project- or method-level documentation
(up to 10 points)

� Missing or inappropriate inline documentation (2 points per violation; up
to 10 points)

� Inappropriate choice of variable or method names (2 points per violation;
up to 10 points)

� Inefficient implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

17

� Incorrect implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

If you do not submit compiled Javadoc for your project, 5 points will be de-
ducted from this part of your score.

Note that the grader may also give warnings or other feedback. Although
no points will be deducted, the issues should be addressed in future submis-
sions(where points may be deducted).

Bonus: up to 5 points

You will earn one bonus point for every twelve hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose five points for every twelve hours that your assignment is sub-
mitted late. For a submission to be considered on time, it must arrive at the
server by the designated minute (and zero seconds). For a deadline of 9:00, a
submission that arrives at 9:00:01 is considered late. Assignments arriving 48
hours after the deadline will receive zero credit.

After 30 submissions to Web-Cat, you will be penalized one point for every
additional submission.

18

