
0018-9162/98/$10.00 © 1998 IEEE32 Computer

D
Should Computer
Scientists Experiment
More?

o computer scientists need to experiment at all? Only
if we answer “yes” does it make sense to ask whether
there is enough of it.

In his Allen Newell Award lecture, Fred Brooks
suggests that computer science is “not a science, but
a synthetic, an engineering discipline.”1 In an engi-
neering field, testing theories by experiments would
be misplaced. Brooks and others seem troubled by
the fact that the phenomena studied in computer sci-
ence appear manufactured. Computers and programs
are human creations, so we could conclude that com-
puter science is not a natural science in the traditional
sense.

The engineering view of computer science is too nar-
row, too computer-myopic. The primary subjects of
inquiry in computer science are not merely comput-
ers, but information structures and information
processes.2 Computers play a dominant role because
they make information processes easier to model and
observe. However, by no means are computers the
only place where information processes occur. In fact,
computer models compare poorly with information
processes found in nature, say, in nervous systems, in
immune systems, in genetic processes, or, if you will,

in the brains of programmers and computer users. The
phenomena studied in computer science are much
broader than those arising around computers.

Regarding the manufactured nature of computer
phenomena (its “syntheticness”), I prefer to think
about computers and programs as models. Modeling
is in the best tradition of science, because it helps us
study phenomena closely. For example, for studying
lasing, one needs to build a laser. Regardless of
whether lasers occur in nature, building a laser does
not make the phenomenon of massive stimulated
emission artificial. Superheavy elements must be syn-
thesized in the lab for study, because they are unsta-
ble and do not occur naturally, yet nobody assumes
that particle physics is synthetic.

Similarly, computers and software don’t occur nat-
urally, but they help us model and study information
processes. Using these devices does not render infor-
mation processes artificial.

A major difference from traditional sciences is that
information is neither energy nor matter. Could this
difference be the reason we see little experimentation
in computer science? To answer this questions, let’s
look at the purpose of experiments.

Cy
be

rs
qu

ar
e

Computer scientists and practitioners defend

their lack of experimentation with a wide range

of arguments. Some arguments suggest that

experimentation is inappropriate, too difficult,

useless, and even harmful. This article

discusses several such arguments to illustrate

the importance of experimentation for

computer science.

Walter F. Tichy
University of Karlsruhe

.

May 1998 33

WHY SHOULD WE EXPERIMENT?
When I discuss the purpose of experiments with

mathematicians, they often exclaim that experiments
don’t prove a thing. It is true that no amount of exper-
imentation provides proof with absolute certainty.
What then are experiments good for? We use experi-
ments for theory testing and for exploration.

Experimentalists test theoretical predictions against
reality. A community gradually accepts a theory if all
known facts within its domain can be deduced from
the theory, if it has withstood numerous experimental
tests, and if it correctly predicts new phenomena.

Nevertheless, there is always an element of sus-
pense: To paraphrase Edsger Dijkstra, an experiment
can only show the presence of bugs in a theory, not
their absence. Scientists are keenly aware of this uncer-
tainty and are therefore ready to shoot down a theory
if contradicting evidence comes to light.

A good example of theory falsification in computer
science is the famous Knight and Leveson experiment,3

which analyzed the failure probabilities of multiver-
sion programs. Conventional theory predicted that
the failure probability of a multiversion program was
the product of the failure probabilities of the individ-
ual versions. However, John Knight and Nancy
Leveson observed that real multiversion programs had
significantly higher failure probabilities. In essence,
the experiment falsified the basic assumption of the
conventional theory, namely that faults in program
versions are statistically independent.

Experiments are also used where theory and deduc-
tive analysis do not reach. Experiments probe the
influence of assumptions, eliminate alternative expla-
nations of phenomena, and unearth new phenomena
in need of explanation. In this mode, experiments help
with induction: deriving theories from observation.

Artificial neural networks are a good example of
the explorative mode of experimentation. After hav-
ing been discarded on theoretical grounds, experi-
ments demonstrated properties better than predicted.
Researchers are now developing better theories to
account for these properties.

Traditional scientific method isn’t applicable
The fact that—in the field of computer science—the

subject of inquiry is information rather than energy
or matter makes no difference in the applicability of
the traditional scientific method. To understand the
nature of information processes, computer scientists
must observe phenomena, formulate explanations and
theories, and test them.

There are plenty of computer science theories that
haven’t been tested. For instance, functional pro-
gramming, object-oriented programming, and formal
methods are all thought to improve programmer pro-
ductivity, program quality, or both. It is surprising that

none of these obviously important claims have ever
been tested systematically, even though they are all 30
years old and a lot of effort has gone into developing
programming languages and formal techniques.

Traditional sciences use theory test and exploration
iteratively because observations help formulate new
theories that can be validated later. An important
requirement for any experiment, however, is repeata-
bility. Repeatability ensures that results can be checked
independently and thus raises confidence in the results.
It helps eliminate errors, hoaxes, and frauds.

The current level of experimentation is good enough
Suggesting that the current level of experimentation

doesn’t need to change is based on the assumption that
computer scientists, as a group, know what they are
doing. This argument maintains that if we need more
experiments, we’ll simply do them.

But this argument is tenuous; let’s look at the data.
In “Experimental Evaluation in Computer Science: A
Quantitative Study,”4 my coauthors and I classified
400 papers. We then continued considering those
papers whose claims required empirical evaluation.
For example, we excluded papers that proved math-
ematical theorems, because mathematical theory can’t
be proven by experiment.

In a random sample of all the papers ACM pub-
lished in 1993, the study found that 40 percent of the
papers with claims that needed empirical support had
none at all. In software-related journals, this fraction
was 50 percent. The same study also analyzed a non-
computer-science journal, Optical Engineering, and
found that the fraction of papers lacking quantitative
evaluation was merely 15 percent.

Fallacy 1. Traditional scientific method
isn’t applicable.

Rebuttal: To understand information processes, computer
scientists must observe phenomena, formulate
explanations, and test them. This is the scientific method.

.

34 Computer

The study by Marvin Zelkowitz and Dolores
Wallace (in this month’s Computer) found similar
results. When applying consistent classification
schemes, both studies report that between 40 and 50
percent of software engineering papers were unvali-
dated. Zelkowitz and Wallace also surveyed journals
in physics, psychology, and anthropology and again
found much smaller percentages of unvalidated papers
than in computer science.

Relative to other sciences, the data shows that com-

puter scientists validate a smaller percentage of their
claims. Some would argue that computer science at
age 50 is still young and hence comparing it to other
sciences is of limited value. I disagree, largely because
50 years seems like plenty of time for two to three gen-
erations of scientists to establish solid principles. But
even on an absolute scale, I think it is scary when half
of the nonmathematical papers make unvalidated
claims.

Assume that each idea published without valida-
tion would have to be followed by at least two vali-
dation studies (which is a very mild requirement). It
follows that no more than one-third of the papers pub-
lished could contain unvalidated claims. The data sug-
gests that computer scientists publish a lot of untested
ideas or that the ideas published are not worth
testing.

I’m not advocating replacing theory and engineer-
ing with experiment, but I am advocating a better bal-
ance. I advocate balance not because it would be
desirable for computer science to appear more scien-
tific, but because of the following principal benefits:

• Experimentation can help build a reliable base of
knowledge and thus reduce uncertainty about
which theories, methods, and tools are adequate.

• Observation and experimentation can lead to
new, useful, and unexpected insights and open
whole new areas of investigation. Experimenta-
tion can push into unknown areas where engi-
neering progresses slowly, if at all.

• Experimentation can accelerate progress by
quickly eliminating fruitless approaches, erro-
neous assumptions, and fads. It also helps orient
engineering and theory in promising directions.

Conversely, when we ignore experimentation and
avoid contact with reality, we hamper progress.

Experiments cost too much
Experimentation clearly requires more resources

than theory does. The first line of defense against
experimentation is typically, “Doing an experiment
would be incredibly expensive” or “To do this right,
I would need hundreds of subjects, work for years
without publishing, and spend an enormous amount
of money.” A hard-nosed scientist might respond, “So
what?”

Instead of being paralyzed by cost considerations,
such a scientist would first probe the importance of
the research question. When convinced that the
research addresses a fundamental problem, an expe-
rienced experimentalist would then plan an appro-
priate research program, actively looking for
affordable experimental techniques and suggesting
intermediate steps with partial results along the way.

Fallacy 2. The current level of
experimentation is good enough.

Fallacy 3. Experiments cost too much.

Rebuttal: Relative to other sciences, the data shows that
computer scientists validate a smaller percentage of their
claims.

Rebuttal: Meaningful experiments can fit into small
budgets; expensive experiments can be worth more than
their cost.

.

programming language research. They may save not
only industry money, but also research effort.

Interestingly, the software industry is beginning to
value experiments, because results may give a com-
pany a three- to five-year lead over the competition.
For instance, according to Larry Votta in a personal
communication, Lucent Technologies estimates that it
is presently benefiting from a five-year lead in software
inspections based on a series of in-house experiments.

It is useful to check what scientists in other disci-
plines spend on experimentation. Testing pharma-
ceuticals is extremely expensive, but only desperate
patients accept poorly tested drugs and therapies. In
aeronautics, engineers test airfoils extensively and
build expensive wind tunnels to do so. Numerical sim-
ulation has reduced the number of such tests, but it
hasn’t eliminated them.

In many sciences, simulation has become a useful
form of experimentation; computer science might also
benefit from good simulation techniques. In biology,
for example, Edward Wilson calls the Forest Fragmen-
tation Project in Brasil the most expensive biological
experiment ever.5 While clearing a large tract of the
Amazon jungle, the researchers left standing isolated
patches of various sizes (1 to 1,000 hectares). The pur-
pose was to test hypotheses regarding the relationship
between habitat size and number of species remaining.

Experimentation is widely used in physics, chem-
istry, ecology, geology, climatology, and on and on.
Scientific American publishes experiments in every
issue. Computer scientists need not be afraid or
ashamed of conducting large experiments to explore
important questions.

May 1998 35

For a scientist, funding potential should not be the
only or primary criterion in deciding what questions
to ask. In the traditional sciences, there is a complex
social process in which important questions crystal-
lize. These become the focuses of research, the break-
through goals that open new areas.

For instance, the first experimental validation of
general relativity—performed by Issac Eddington in
1919—was tremendously expensive and barely
showed the effect. Eddington used a total solar eclipse
to check Einstein’s theory that gravity bends light
when it passes near a massive star. This was a truly
expensive experiment because it involved an expedi-
tion to Principe Island, West Africa, and also because
the experiment pushed the limits of photographic
emulsion technology. But it was important to test
whether Einstein was correct.

Not many investigations are of a scope comparable
to that for general relativity, but there are many
smaller, still-important questions to answer.
Experiments can indeed be expensive, but not all are
prohibitively expensive. Meaningful experiments can
fit in the budget of small laboratories. On the other
hand, expensive experiments can be worth much more
than their cost.

When human subjects are involved in an experi-
ment, the cost often rises dramatically while the sig-
nificance drops. When are expensive experiments
justified? When the implications of the gained insights
outweigh the costs.

A significant segment of the software industry con-
verted from C to C++ at a substantial cost in retrain-
ing. We might ask how solidly grounded the decision
to switch to C++ was. Other than case studies (which
are questionable because they don’t generalize easily
and may be under pressure to demonstrate desired
outcomes), I’m not aware of any solid evidence show-
ing that C++ is superior to C with respect to pro-
grammer productivity or software quality.

Nor am I aware of any independent confirmation of
such evidence. However, while training students in
improving their personal software processes, my
research group has recently observed that C++ pro-
grammers appear to make many more mistakes and take
much longer than C programmers of comparable train-
ing—both during initial development and maintenance.

Suppose this observation is not a fluke. (Just as this
article went to press, we learned that a paper by Les
Hatton, “Does OO Really Match the Way We Think?”
will appear in the May issue of IEEE Software, report-
ing strong evidence about the negative effects of C++.)
Then running experiments to test the fundamental
tenets of object-oriented programming would be truly
valuable. These experiments might save resources far
in excess of their cost. The experiments might also
have a lasting and positive effect on the direction of

Fallacy 4. Demonstrations will suffice.

Rebuttal: Demos can provide incentives to study a question
further. Too often, however, these demos merely illustrate
a potential.

.

36 Computer

Demonstrations will suffice
In his 1994 Turing Award lecture, Juris Hartmanis

argues that computer science differs sufficiently from
other sciences to permit different standards in exper-
imentation, and that demonstrations can take the
place of experiments.6 I couldn’t disagree more. Demos
can provide proof of concepts (in the engineering
sense) or incentives to study a question further. Too
often, however, these demos merely illustrate a poten-
tial. Demonstrations critically depend on the observers’
imagination and their willingness to extrapolate; they
do not normally produce solid evidence. To obtain
such evidence, we need careful analysis involving
experiments, data, and replication.

For example, because the programming process is
poorly understood, computer scientists could intro-
duce different theories about how to build programs
from requirements. These theories could then be tested
experimentally. We could do the same for perception,
human-machine interfaces, or human-computer inter-
action in general.

Also, computer science cannot accurately predict
the behavior of algorithms on typical problems or on
computers with storage hierarchies. We need better
algorithm theories, and we need to test them in the
lab. Research in parallel systems can generate
machine models, but their relative merits can only be
explored experimentally. The examples I’ve men-
tioned are certainly not exhaustive, but they all
involve experiments in the traditional sense. They
require a clear question, an experimental apparatus to
test the question, data collection, interpretation, and
sharing of the results.

There’s too much noise in the way
Another line of defense against experimentation is:

“There are too many variables to control and the
results would be meaningless because the effects I’m

looking for are swamped by noise.” Researchers
invoking this excuse are looking for an easy way out.

An effective way to simplify repeated experiments
is by benchmarking. Fortunately, benchmarking can
be used to answer many questions in computer sci-
ence. The most subjective and therefore weakest part
of a benchmark test is the benchmark’s composition.
Everything else, if properly documented, can be
checked by the skeptic. Hence, benchmark composi-
tion is always hotly debated.

Though often criticized, benchmarks are an effec-
tive and affordable way of conducting experiments.
Essentially, a benchmark is a task domain sample exe-
cuted by a computer or by a human and computer.
During execution, the human or computer records
well-defined performance measurements.

Benchmarks have been used successfully in widely
differing areas, including speech understanding, infor-
mation retrieval, pattern recognition, software reuse,
computer architecture, performance evaluation,
applied numerical analysis, algorithms, data com-
pression, logic synthesis, and robotics. A benchmark
provides a level playing field for competing ideas, and
(assuming the benchmark is sufficiently representa-
tive) allows repeatable and objective comparisons. At
the very least, a benchmark can quickly eliminate
unpromising approaches and exaggerated claims.

Constructing a benchmark is usually intense work,
but several laboratories can share the burden. Once
defined, a benchmark can be executed repeatedly at
moderate cost. In practice, it is necessary to evolve
benchmarks to prevent overfitting.

Regarding benchmark tests in speech recognition,
Raj Reddy writes, “Using common databases, com-
peting models are evaluated within operational sys-
tems. The successful ideas then seem to appear
magically in other systems within a few months, lead-
ing to a validation or refutation of specific mechanisms
for modeling speech.”7 In many of the examples I cited
earlier, benchmarks cause an area to blossom suddenly
because they make it easy to identify promising
approaches and to discard poor ones. I agree with
Reddy that “all of experimental computer science
could benefit from such disciplined experiments.”

Experiments with human subjects involve addi-
tional challenges. Several fields, notably medicine and
psychology, have found techniques for dealing with
human variability. We’ve all heard about control
groups, random assignments, placebos, pre- and post-
testing, balancing, blocking, blind and double-blind
studies, and batteries of statistical tests. The fact that
a drug influences different people in different ways
doesn’t stop medical researchers from testing.

When control is impossible, researchers will use case
studies, observational studies, and other investigative
techniques. Indeed, medicine offers many important

Fallacy 5. There’s too much noise in
the way.

Rebuttal: Fortunately, benchmarking can be used to simplify
variables and answer questions.

.

May 1998 37

How to Experiment
For the reader eager to learn about the

role of experimentation in general, I sug-
gest the following literature:

Chalmers, A.F., What Is This Thing Called Sci-
ence? The Open University Press, Buck-
ingham, England, 1988. Addresses the
philosophical underpinnings of the scien-
tific process, including inductivism, Pop-
per’s falsificationism, Kuhn’s paradigms,
objectivism, and the theory dependence of
observation.

Latour, B., Science in Action: How to Follow
Scientists and Engineers through Society,
Harvard University Press, Cambridge,
Mass., 1987. Describes the social processes
of science-in-the-making as opposed to
ready-made science. Latour illustrates the
fact-building and convincing power of lab-
oratories with fascinating examples.

Basili, V.R., “The Role of Experimentation in
Software Engineering: Past, Current, and
Future.” Proc. 18th Int. Conf. Software
Eng., IEEE Computer Soc. Press, Los
Alamitos, Calif., March 1996.

Frankl, P.G., and S.N. Weiss, “An Experimen-

tal Comparison of the Effectiveness of
Branch Testing and Data Flow Testing,”
IEEE Trans. Software Eng., Aug. 1993,
pp. 774-787.

Brett, B., “Comments on The Cost of Selec-
tive Recompilation and Environment
Processing,” ACM Trans. Software Eng.
and Methodology, 1995, pp. 214-216. A
good example of a repeated experiment
in compiling.

Denning, P.J., “Performance Evaluation:
Experimental Computer Science at Its
Best,” ACM Performance Evaluation
Review, ACM Press, New York, 1981,
pp. 106-109. Argues that performance
evaluation is an excellent form of exper-
imentation in computer science.

Hennessy, J.L., and D.A. Patterson, Computer
Architecture: A Quantitative Approach,
Morgan Kaufmann, San Mateo, Calif.,
1990. A landmark in making computer
architecture research quantitative.

Cohen, P.R., Empirical Methods for Artifi-
cial Intelligence, MIT Press, Cambridge,
Mass., 1995. Covers empirical methods
in AI, but a large part applies to all of
computer science.

Fenton, N.E., and S.L. Pfleeger. Software Met-
rics: A Rigorous and Practical Approach
(2nd edition), Thomson Computer Press,
New York, 1997. Excellent discussion of
experimental designs as well as a wealth
of material on experimentation with soft-
ware.

Christensen, L.B., Experimental Methodol-
ogy, Allyn and Bacon, New York, 1994.
Judd, C.M., E.R. Smith, and L.H. Kid-
der, Research Methods in Social Rela-
tions, Holt, Rinehart, and Winston,
1991. General experimental methods.

Moore, D.S., and G.P. McCabe, Introduc-
tion to the Practice of Statistics, W.H.
Freeman and Co., New York, 1993.
Excellent introductory text on statistics.

Venables, W.N. and B.D. Ripley, Modern
Applied Statistics with S-PLUS, Springer
Verlag, New York, 1997. One of the best
statistical packages available today is S-
Plus. Venables and Ripley’s book is both a
guide to using S-Plus and a course in mod-
ern statistical methods. Keep in mind,
however, that sophisticated statistical
analysis is no substitute for good experi-
mental design.

Fallacy 6. Experimentation will slow
progress.

erating progress. Questionable ideas would be
weeded out more quickly, and scientists would
concentrate their energies on more promising
approaches.

Rebuttal: Increasing the ratio of papers with meaningful
validation has a good chance of actually accelerating
progress.

lessons on experimental design, such as how to con-
trol variables and minimize errors. Eschewing exper-
imentation because of difficulties is not acceptable.

In so-called soft science, experimental results can-
not be reproduced. The fear is that computer science
will fall into this trap, especially with human subject
testing. But experiments with human subjects are not
necessarily soft. There are stacks of books on how to
conduct experiments with humans. Experimental
computer scientists can learn the relevant techniques
or ask for help. The “How to Experiment” sidebar
provides some starting points.

Progress will slow
Some argue that if everything must be experimen-

tally supported before publication, then the flow of
ideas would be throttled and progress would slow.

This is not an argument to be taken lightly. In a
fast-paced field like computer science, the number of
ideas under discussion is obviously important.
However, experimentation need not have an adverse
effect:

• Increasing the ratio of papers with meaningful
validation has a good chance of actually accel-

.

38 Computer

• I’m confident that readers would continue to value
good conceptual papers and papers formulating
new hypotheses, so such papers would still be pub-
lished. Experimental testing would come later.

It is a matter of balance. Presently, nontheory
research rarely moves beyond the assertive state, char-
acterized by such weak justification as “it seems intu-
itively obvious,” or “it looks like a good idea,” or “I
tried it on a small example and it worked.” We need
to reach a ground firmer than assertion.

Technology changes too fast
Concerns about technology changing too rapidly

frequently arise in computer architecture. Trevor
Mudge summarizes it nicely: “The rate of change in

computing is so great that by the time results are con-
firmed they may no longer be of any relevance.”8 We
can say the same about software. What good is an
experiment when its duration exceeds the useful life of
the experimental subject—a software product or tool?

If a question becomes irrelevant quickly, it is per-
haps too narrowly defined and not worth spending a
lot of effort on. But behind many questions with a
short lifetime lurks a fundamental problem with a long
lifetime; scientists should probe for the fundamental
and not the ephemeral, learning to tell the difference.
Also, technological change often shifts or eliminates
assumptions that were once taken for granted.

Scientists should therefore anticipate changes in
assumptions and proactively employ experiments to
explore the consequences of such changes. This type
of work is much more demanding and can have much
higher long-term value than merely comparing soft-
ware products.

You’ll never get it published
Some established computer science journals have dif-

ficulty finding editors and reviewers capable of evalu-
ating empirical work. Theorists may dominate their
editorial boards, and experimenters are often con-
fronted with reviewers who expect perfection and
absolute certainty. However, experiments are conducted
in the real world and are therefore always flawed in
some way. Even so, I’ve seen publications demand that
experiments be conducted with hundreds of subjects
over a span of many years and several industrial pro-
jects before publication. We need to realize that smaller
steps are still worth publishing because they improve
our understanding and raise new questions.

In my experience, publishing experimental results
is not difficult if one chooses the right outlet. I’m on
the editorial board of three journals. I review for sev-
eral additional journals and have served on numerous
conference committees. All nontheoretical journals
and conferences that I know of would greatly wel-
come papers describing solid experimentation. The
occasional rejection of high-quality papers notwith-
standing, I’m convinced that the low number of good
experimental papers is a supply problem.

I fear, however, that the systems researcher of old
will face difficulties. Just building systems is not enough
unless the system demonstrates some kind of a first, a
breakthrough. Computer science continues to be
favored with such breakthroughs, and we should con-
tinue to strive for them. The majority of systems
researchers, however, work on incremental improve-
ments of existing ideas. These researchers should try
to become respectable experimentalists, and they must
articulate how their systems contribute to our knowl-
edge. Systems come and go. We need insights about
the concepts and phenomena underlying such systems.

Fallacy 7. Technology changes too fast.

Fallacy 8. You’ll never get it published.

Rebuttal: If a question becomes irrelevant quickly, it is
too narrowly defined and not worth spending a lot of
effort on.

Rebuttal: Smaller steps are still worth publishing because
they improve our understanding and raise new questions.

.

May 1998 39

WHY SUBSTITUTES WON’T WORK
Can we get by with forms of validation that are

weaker than experimentation? It depends on what
question we’re asking. A conventional model for a sci-
entific paper includes the following elements:

• The work describes a new idea, prototyped per-
haps in a small system.

• The work claims its place in “science” by making
feature comparisons. That is, the report sets out
a list of features and qualitatively compares older
approaches with the new one, feature by feature.

I find this method satisfactory when someone pre-
sents a radically new idea or a significant break-
through, such as when researchers presented the first
compiler for a block-structured language, time-shar-
ing system, object-oriented language, or Web browser.
Unfortunately, the majority of papers published take
much smaller steps forward. As computer science
becomes a harder science, mere discussions of advan-
tages and disadvantages or long feature comparisons
will no longer suffice; any PC magazine can provide
those. Science, on the other hand, cannot live off such
weak inferences in the long run. Instead, scientists
should create models, formulate hypotheses, and test
them using experiments.

Trust your intuition
In a March 1996 column, Al Davis, the editor-in-chief

of IEEE Software, suggested that gut feeling is enough
when adopting new software technology; experimen-
tation and data are superfluous. He even suggested
ignoring evidence that contradicts one’s intuition.9

Instinct and personal experience occasionally lead
down the wrong path, and computer science is no
exception to this truism, as several examples illustrate:

• For about 20 years, it was thought that meetings
were essential for software reviews. Recently,
however, Porter and Johnson found that reviews
without meetings are substantially no more or
less effective than those with meetings.10 Meeting-
less reviews also cost less and cause fewer delays,
which can lead to a more effective inspection
process overall.

• Another example is when small software com-
ponents are proportionally less reliable than
larger ones. This observation was first reported
by Victor R. Basili11 and confirmed by several dis-
parate sources. (Les Hatton offers summaries and
an explanatory theory.12)

• As mentioned, the failure probabilities of multi-
version programs were incorrectly believed to be
the product of the failure probabilities of the
component versions.

• Type checking is thought to reveal programming
errors, but there are contexts in which it does
not help.13

What we can learn from these examples is
that intuition may provide a starting point, but
must be backed up by empirical evidence.
Without proper grounding, intuition is ques-
tionable. Shari Lawrence Pfleeger provides fur-
ther discussion of the pitfalls of intuition.14

Trust the experts
During a recent talk at a US university, I was

about to present my data when a colleague inter-
rupted and suggested that I skip that part and go
on to the conclusions. “We trust you” was the
explanation. Flattering as this was, it demonstrates a dis-
turbing misunderstanding of the scientific process (or
indicates someone in a hurry). Any scientific claim is ini-
tially suspect and must be examined closely. Imagine
what would have happened if physicists hadn’t been
skeptical about the claims by Stanley Ponds and Martin
Fleischman regarding cold fusion.

Frankly, I’m continually surprised by how much the
computer industry and sometimes even university teach-
ing relies on so-called experts who fail to support their
assertions with evidence. Science, on the other hand, is
built on healthy skepticism. It is a good system to check
results carefully and to accept them only provisionally
until they have been independently confirmed.

PROBLEMS DO EXIST
There are always problems with experimentation.

Experiments may be based on unrealistic assumptions,
researchers may manipulate the data, or it might be
impossible to quantify the variable of interest. There
are plenty of potential flaws. Good examples of solid
experimentation in computer science are rare, but we
should not discard the concept of experimentation
because of this. Other scientific fields have been faced
with bad experiments, even frauds, but—on the
whole—the scientific process has been self-correcting.

Competing theories
A science is most exciting when there are two or more

strong, competing theories. There are a few competing
theories in computer science, none of them earth-shak-
ing. The physical symbol system theory and the knowl-
edge processing theory in AI are two competing theories
that attempt to explain intelligence. The weak reason-
ing methods of the first theory have gradually given way
or have coupled with knowledge bases.15

Another important example is algorithm theory.
The present theory has many drawbacks. In particu-
lar, it does not account for the behavior of algorithms
on typical problems.16 A theory that more accurately

The fact that the
subject of inquiry in
computer science is
information rather

than energy or
matter makes no
difference in the

applicability of the
traditional scientific

method.

.

40 Computer

applies to modern computers would be valuable.
A prerequisite for competition among theories,

however, is falsifiability. Unfortunately, computer sci-
ence theorists rarely produce falsifiable theories. They
tend to pursue mathematical theories that are discon-
nected from the real world. While computer science
is perhaps too young to have brought forth grand the-
ories, my greatest fear is that the lack of such theories
might be caused by a lack of experimentation. If sci-
entists neglect experiment and observation, they’ll
have difficulties discovering new and interesting phe-
nomena worthy of better theories.

Unbiased results
Another argument against experimentation takes

the following direction: “Give the managers or fund-
ing agencies a single figure of merit, and they will use
it blindly to promote or eliminate the wrong research.”

This argument is a red herring. Good managers, sci-
entists, and engineers all know better than to rely on
a single figure of merit. Also, there is a much greater
danger in relying on intuition and expert assertion
alone. Keeping decision-makers in the dark has an
overwhelmingly higher damage potential than inform-
ing them to the best of one’s abilities.

Experimentation is central to the scientific
process. Only experiments test theories. Only
experiments can explore critical factors and

bring new phenomena to light so that theories can be
formulated and corrected. Without experiments, com-
puter science is in danger of drying up and becoming
an auxiliary discipline. The current pressure to con-
centrate on application is the writing on the wall.

I don’t doubt that computer science is a fundamen-
tal science of great intellectual depth and importance.
Much has already been achieved. Computer technol-
ogy has changed society, and computer science is in
the process of deeply affecting the world view of the
general public. There is also much evidence suggesting
that the scientific method does apply. As computer sci-
ence leaves adolescence behind, I hope to see the
experimental branch of this discipline flourish. ❖

Acknowledgments

I’m grateful for thought-provoking comments from
Les Hatton, Ernst Heinz, James Hunt, Paul Lukowicz,
Anneliese von Mayrhauser, David Notkin, Shari L.
Pfleeger, Adam Porter, Lutz Prechelt, and Larry Votta.

References

1. F.P. Brooks, “Toolsmith,” Comm. ACM, Mar. 1996, pp.
61-68.

2. A. Ralston and E.D. Reilly, Encyclopedia of Computer

Science, Third Edition, Van Nostrand Reinhold, 1993.
3. J.C. Knight and N.G. Leveson, “An Experimental Evalu-

ation of the Assumption of Independence in Multiversion
Programming,” IEEE Trans. Software Eng., Jan. 1986,
pp. 96-109.

4. W.F. Tichy et al., “Experimental Evaluation in Computer
Science: A Quantitative Study,” J. Systems and Software,
Jan. 1995, pp. 1-18.

5. E.O. Wilson, The Diversity of Life, Harvard Univ. Press,
Cambridge, Mass., 1992.

6. J. Hartmanis, “Turing Award Lecture: On Computa-
tional Complexity and the Nature of Computer Sci-
ence,” Comm. ACM, Oct. 1994, pp. 37-43.

7. R. Reddy, “To Dream the Possible Dream,” Comm.
ACM, May 1996, pp. 105-112.

8. T. Mudge, “Report on the Panel: How Can Computer
Architecture Researchers Avoid Becoming the Society
for Irreproducible Results?” Computer Architecture
News, Mar. 1996, pp. 1-5.

9. A. Davis, “From the Editor,” IEEE Software, Mar. 1996,
pp. 4-7.

10. A.A. Porter and P.M. Johnson, “Assessing Software
Review Meetings: Results of a Comparative Analysis of
Two Experimental Studies,” IEEE Trans. Software Eng.,
Mar. 1997, pp. 129-145.

11. V.R. Basili and B.T. Perricone, “Software Errors and
Complexity: An Empirical Investigation,” Comm. ACM,
Jan. 1984, pp. 42-52.

12. L. Hatton. “Reexamining the Fault Density: Component
Size Connection,” IEEE Software, Apr. 1997, pp. 89-97.

13. L. Prechelt and W.F. Tichy, “An Experiment to Assess
the Benefits of Inter-Module Type Checking,” IEEE
Trans. Software Eng., Apr. 1998.

14. S.L. Pfleeger et al., “Rebuttal to March 96 editorial,”
IEEE Software, July 1996.

15. E.A. Feigenbaum, “How the What becomes the How,”
Comm. ACM, May 1996, pp. 97-104.

16. J.N. Hooker, “Needed: An Empirical Science of Algo-
rithms,” Operations Research, Mar. 1994, pp. 201-212.

Walter F. Tichy is professor of computer science at the
University Karlsruhe, Germany. Previously, he was
senior scientist at the Carnegie Group in Pittsburgh,
Pennsylvania, and on the faculty of computer science
at Purdue University in West Lafayette, Indiana. His
research interests include software engineering and
parallelism, specifically software architecture, design
patterns, configuration management, workstation
clusters, optoelectronic interconnects for parallel com-
puters, and program optimization tools for parallel
computers. He received an MS and a PhD in computer
science from Carnegie Mellon University.

Contact Tichy at tichy@ira.uka.de or http://wwwipd.
ira.uka.de/~tichy

.

