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Digital logic circuits composed of components such as AND, OR and NOT gates and that
do not contain loops are what we refer to as stateless. In other words, the output that the
circuit produces only depends on the current inputs, and does not depend on any previous
inputs. These types of circuits are also referred to as combinatorial circuits.

However, as we design computing systems, we have a need for our circuits to maintain
some record of what has happened before. For example, as you type letters into your favorite
editor, you want your editor to remember what you have typed. In your computer, these
data are stored in a variety of memories (including your disk drive and your Random Access
Memory, or RAM).

In general, a circuit that maintains a memory of the past is referred to as a sequential

logic circuit. At the heart of these circuits are logic devices called latches and flip-flops that
store a single bit of data until the bit is overwritten at a later (often arbitrary) time.

The concepts outlined in the following sections will be important for our later under-
standing of several key ideas, including:

• binary numbers,

• software control of the configuration of a microcontroller,

• software manipulation of the voltage state of a microcontroller’s output pin,

• the generation of precise timing signals in a microcontroller, and

• the implementation of basic mathematical operations in a microprocessor.

1 D-Type Flip-Flops

One logic device that stores data is called a D-Type flip-flop. Here, flip-flop refers to the fact
that the stored bit can be “flipped” back and forth between a logic 0 and a logic 1 state. D

refers to the type of input provided to the device, shown in Figure 1. The outputs of the
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Figure 1: A D-Type Flip-Flop.

device are Q and Q′, where Q is the value that has been stored by the flip-flop and Q′ is the
NOT of the stored value. The inputs of the device are the data input (D) and the clock (the
triangular symbol).

Under most conditions, the D flip-flop does not change its output value (also called its
state), even as the D input changes. However, when the clock signal transitions from logic
1 to logic 0, the value presented at D just prior to the transition is stored by the flip-flop.
The outputs Q and Q′ are then changed to reflect this stored value.

Figure 2 shows an example of how the flip-flop responds to various inputs. Here, the
initial state of Q is given as logic 0 (and hence Q′ = 1). In addition, the CLK and D signals
are given. Q over time is determined by 1) its initial value, and 2) the input signals CLK

and D. In particular, Q changes only when CLK transitions from logic 1 to 0 (these times
are indicated by the dotted vertical lines). At the first transition, D is 1, which results in Q

changing to 1. At the second clock transition, D is also 1. However, since Q = 1 already, we
do not observe a change. Note that D temporarily flips to low between transitions 1 and 2.
This does not affect the state of the flip-flop. At transition 3, D is at 0, which causes Q to
change to 0. Finally, at transition 4, D is again at 0. As a result, Q remains in the 0 state.

2 Frequency Divider

The circuit shown in Figure 3 implements a form of frequency divider of the clock signal. In
this circuit, the Q′ output signal is used as input into D. Suppose that at a given time, the
current state of the flip-flop is Q = 0. Because Q′ = 1, D is also 1. When the clock input
transitions from 1 to 0, the value presented to D is copied to Q. In this case, Q becomes 1.

Now, because Q′ = 0, the value presented to the D input is also 0. When the clock again
transitions from 1 to 0, this value is copied to Q. Hence, Q becomes 0. This process repeats
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Figure 2: A Flip-Flop Example.

itself every two cycles of the clock signal. The corresponding timing diagram is shown in
Figure 4. Note that Q and Q′ are always opposites of one-another (this is a property of the
flip-flop). Also note that the frequency of the signal on Q is exactly half that of the clock,
CLK.

3 Shift Register

The circuit shown in Figure 5 is composed of three flip-flops and implements a form of shift

register. Note that the CLK signal is distributed to all of the flip-flops. When this signal
transitions from 1 to 0, the three flip-flops simultaneously copy the value that is presented
to their respective D input to Q. Specifically, as a result of the clock transition, X0 will
take on the value that was presented on Y , X1 will take on the value that was previously
X0, and X2 will take on the value that was previously X1.

As an example, consider the timing diagram in Figure 6. Here, the initial state is X2 = 0,
X1 = 0 and X0 = 0. The CLK and Y values are given. The subsequent states of X2, X1
and X0 are determined by these input signals and by their initial states. On the first
transition of CLK from 1 to 0, the value of Y is copied to X0, as shown by the upper-left
dashed arrow (at coordinate [Y, 1]). This results in a change of X0 from 0 to 1. Likewise,
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Figure 3: Frequency Divider Circuit.
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Figure 4: Timing digram for the frequency divider circuit. Note that the initial state of Q

(and hence Q′) is given as an initial condition. The subsequent states are determined by this
initial state, the CLK signal, and the circuit itself.

the old value of X0 is copied to X1 (arrow at coordinate [X1, 1]), leaving X1 in a state of 0.
Finally, the old value of X1 is copied to X2 (coordinate [X2, 1]), leaving X2 in a state of 0.

On the second transition, the same copy operations are performed: Y (which is now 0),
is copied to X0, the old value of X0 (1) is copied to X1, and the old value of X1 (0) is
copied to X2. This same pattern continues through clock transitions 3 and 4.

Note that one can interpret the X’s as individual bits in a 3-bit binary number: X2, X1, X0,
or just X. Looking again at Figure 6, the initial value of X is binary 000 (decimal 0). After
transition 1, the value is 001 (decimal 1). After transition 2, the value is 010 (decimal 2).
After transitions 3 and 4, the value is 100 (decimal 4) and 001 (decimal 1), respectively.

Because a bit value is copied at each transition from one Xi to the next one (i + 1), we
refer to this as a left shift register. When Y = 0, each transition adds an extra 0 on the
right-hand-side of the binary value. This operation is equivalent to multiplying the binary
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Figure 5: Shift register circuit.

value by 2.1 Note that when the binary value is larger than or equal to 4 (when X2 = 1),
multiplying by 2 effectively produces a carry that is lost by this circuit. For example, when
X = 100, shifting left leaves us with X = 000 (as opposed to X = 1000). This is an inherent
limitation of all digital representations of integers: there is always a maximum value that we
can represent, and is determined by how many bits that are used to represent the number
and whether the number can also capture negative values.

One can also design a complimentary circuit that shifts the bits from left to right. Such
a right shift register implements the mathematical operation of dividing by 2 and dropping
the remainder.

4 Binary Counters

Binary counter circuits implement the mathematical operation of adding 1 to a value. Table 1
lists the first eight binary values, starting at 0. Our binary counter circuit will start at
some initial condition (say, row i). After the clock transition from 1 to 0, the value should
correspond to row i+1. When B = 111, the next integer in the sequence would be B = 1000.
However, in this example, we only have 3 bits to work with and the carry to the 4th bit is
lost. Hence, the next value following B = 111 is B = 000.

If we consider time as moving from one row to another at a regular pace, then B0 exhibits
a signal at a particular frequency. Looking at bit B1, this signal is half the frequency of B0.
Furthermore, B1 changes state every time B0 changes from 1 to 0. The same is true for B2:

1An analogy: in decimal, or base 10, adding a 0 to the right-hand-side of a number is equivalent to

multiplying it by 10.

5



X1

Y

CLK

X2

X0

time

1 2 3 4

Figure 6: Shift register timing example. The dashed arrows show how the bit values in one
time period affect the bit values in the next period.

it operates at half the frequency of B1 and it changes state every time B1 changes from 1
to 0.

4.1 Ripple Counter

The ripple counter exploits this frequency division property of the bits in the counting
sequence. Figure 7 shows a 3-bit ripple counter. Here, the CLK signal is only connected to
the clock input of the leftmost flip-flop (that stores B0). As we noted about the counting
sequence, B1 will flip state every time B0 transitions from 1 to 0. Hence, we can use B0
as the clock input to the middle flip-flop (that stores B1). Likewise, B1 can be used as the
clock input to the rightmost flip-flop (B2).

Figure 8 shows the timing behavior of our circuit. In this example, the initial state of
B = 000 is given. The evolution of this state as a function of time is determined by this
initial state and the CLK signal. The ripple counter name comes from the fact that a carry

(in the mathematical sense) will “ripple down” the circuit from left to right. When bit i is 1
and its clock input transitions from 1 to 0, it produces a carry that causes 1 to be added to
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Binary Value Decimal Value
B2 B1 B0
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Table 1: Binary values from 0 to 7.
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Figure 7: Ripple Counter Circuit.

bit i+1. In turn, this may result in a carry that is passed on to bit i+2. This rippling effect
is shown in the small delay in response by B1 with respect to B0 and of B2 with respect to
B1.

Although the ripple counter design is very simple, a possible disadvantage is the fact that
the flip-flops do not all change state at the same time. In fact, bit i can only change state
after i − 1 changes state. Although these delays may be on the order tens of nanoseconds,
for some applications, they can be unacceptable. This brings us to a different design – one
in which all of the bits change state at the same time.
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Figure 8: Timing diagram for the ripple counter circuit.

4.2 Sequential Counter

One possible implementation of a 3-bit sequential counter is shown in Figure 9. Here (as
in many sequential circuits), the clock inputs to all of the flip-flops receive the same CLK

signal. This will ensure that the flip-flops change state at exactly the same time. Analyzing
the temporal behavior of sequential circuits is a two-step process. First, assume a constant
state for all of the flip-flops and no change in state of the clock signal. Given the flip-
flop state, and possibly other external inputs (though none are shown in this circuit), we
compute the values of each of the D inputs. Second, given the D inputs, we assume that
CLK transitions from logic 1 to 0, resulting in a copy of the D values to Q. This process is
then repeated.

As an example, assume that the initial state of the counter is B = 000 in Figure 9. This
implies that D2 = 0, D1 = 0 and D0 = 1. On the subsequent clock tick (from 1 to 0), this
results in a new counter state of B = 001. In this new state, D2 = 0, D1 = 1 and D0 = 0.
On the next clock tick, the state then becomes B = 010.

Assuming an initial state of B = 011, then D2 = 1, D1 = 0 and D0 = 0. Hence, the next
state is B = 100. In this state, D2 = 1, D1 = 0 and D0 = 1. The next state is B = 101.

Assuming an initial state of B = 111, then D2 = 0, D1 = 0 and D0 = 0. Hence, the
next state is B = 000.

Assuming an initial counter state of B = 000, Figure 10 shows the corresponding timing
diagram. This diagram is virtually identical to that of the ripple counter, except that there
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Figure 9: Sequential Counter Circuit.

is no delay in response between the bits. Note, however, there is a real delay between the
CLK signal changing from 1 to 0 and the response of the flip-flops. However, this delay is
not shown for convenience.

The behavior of a sequential circuit can be analyzed more formally by constructing a
truth table that describes what happens in every state. This table will have one row for
every possible bit state and external input (an example of an external input is coming in the
next section). For each row, we show the D value for each flip-flop.

Table 2 shows the truth table that corresponds to the circuit shown in Figure 9. Note that
we have already discussed some of these rows above. The truth table captures a complete
picture of each of the possible states and what the next state will be, as encoded by the D

inputs. Hence, this table gives us a direct way of reading off the sequence of states given an
initial state. This is something that we can do without constructing a timing diagram. For
this example, B = 011 is followed by B = 100, which is in turn followed by B = 101.

4.3 Up-Down Counter

An up-down counter is a logical device that will either add or subtract one from a stored
value, depending upon the value of an external control input. Figure 11 illustrates the
implementation of a 3-bit up-down counter. As before, B2, B1 and B0 represent the values
that are stored by the counter (and are also outputs from the circuit). Control signal X

determines whether one is added (X = 0) or subtracted (X = 1) from the stored value.
While this circuit is more complicated that the previous one, we can get a handle on how

it behaves by focusing on what each of the D inputs is as a function of the current state and
of the external output X. We will do this by constructing a truth table that contains a total
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Figure 10: Timing diagram for the sequential counter circuit.

of 16 rows (one external input + 3 state bits implies 24 cases). The completed truth table is
shown in Table 3. However, the reader should confirm the correct values of the D’s for each
of the 16 cases.

First, we will focus on B0. Note that D0 is directly connected to Q0′. Hence, the next
state of this flip-flop will always be the opposite of its previous state.

For B1, note that D1 only receives inputs from Q0, Q1 and X. Hence, we have only 8
cases to consider, since the circuit will do the same thing no matter the state of Q2. As you
analyze this part of the circuit, a useful pair Boolean rules is: X ⊕ 0 = X and X ⊕ 1 = X̄.

Finally, for B2, we must consider all 16 cases separately.
Given Table 3, we can then determine the sequence of states that will be produced (one

state for each clock tick) based on an initial state and the control input X. Suppose an
initial state of B = 101 and X = 0. The next states will be B = 110, B = 111 and B = 000.
In contrast, assume an initial state of B = 010 and X = 1. The next states will be B = 001,
B = 000 and B = 111.
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State Next State
B2 B1 B0 D2 D1 D0
0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

Table 2: Truth table for the sequential counter circuit.
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Figure 11: A sequential up-down counter implementation.
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Input State Next State
X B2 B1 B0 Value D2 D1 D0 Value
0 0 0 0 0 0 0 1 1
0 0 0 1 1 0 1 0 2
0 0 1 0 2 0 1 1 3
0 0 1 1 3 1 0 0 4
0 1 0 0 4 1 0 1 5
0 1 0 1 5 1 1 0 6
0 1 1 0 6 1 1 1 7
0 1 1 1 7 0 0 0 0
1 0 0 0 0 1 1 1 7
1 0 0 1 1 0 0 0 0
1 0 1 0 2 0 0 1 1
1 0 1 1 3 0 1 0 2
1 1 0 0 4 0 1 1 3
1 1 0 1 5 1 0 0 4
1 1 1 0 6 1 0 1 5
1 1 1 1 7 1 1 0 6

Table 3: Truth table for the sequential counter circuit. Value is the decimal equivalent of
the corresponding binary value.
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