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Dimensionality Reduction
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Challenges

Most data that we wish to analyze live in high-dimensional 

spaces

• Potentially need really large data sets to achieve a 

reasonable representation of the sample distribution

• Our intuition can go out the door quickly

• Some of our math breaks 

• Computational tools may not scale to high dimensions 

well
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Challenges

Random points selected uniformly from a unit N-cube:

• Distances become really large

• Distribution of distances becomes very narrow

– By N=30, all uniformly selected point pairs have very similar 

distances

– This suggests that the Euclidean distance metric may not have 

much meaning
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Sample Distribution

For many data sets, samples are not drawn uniformly 
from the feature space

• 0 D: clusters

• 1 D: line segments / curves

• 2 D: planes / surfaces

• :

Use the term manifold to describe a group of samples 
that locally vary in some dimensions, but not in others
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Dimensionality Reduction

• Goal: 

– Given a set of samples from some N-dimensional feature space

– Re-encode the samples into a smaller M-dimensional space

• Challenge:

– No labels
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Projection Approaches

Projection: linear transformation of a point in N space onto a 

nearby M-dimensional manifold (where M << N)

• Projection into linear subspaces

• Warping space, followed by projection
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Embedding Approaches

• Identify samples that are “near” one-another in the 

N-dimensional feature space

• Find a way to embed corresponding points into an M-

dimensional space that respects this “nearness”

• Again: M << N
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Benefits of Reducing the Dimensionality of a Feature Set 

• Make explicit the primary variance in the samples

– While: removing only small variance 

• Through visualization of the reduced-dimensionality data:

– Possible to reclaim some of our intuition about the data

– Or even discover new, interesting relationships
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Benefits of Reducing the Dimensionality of a Feature Set 

Can use as a means of preprocessing our data before 

applying other learning techniques.  Smaller dimensionality 

implies:

• Subsequent models have fewer parameters

• Reduced potential for overfitting

• Training times can be much faster

Andrew H. Fagg: Machine Learning Practice 10



CS/DSA 5970: Machine Learning Practice

Principal Component Analysis
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Principal Component Analysis

Incremental process:

• Identify the one axis in a feature space along which we 

have the highest variance

• Subtract all variance along this axis

• Repeat

Andrew H. Fagg: Advanced Machine Learning 14



Drawing…
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Example: Principal Component Analysis
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Live demo
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Example: PCA with Kinematics
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Live demo
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Kernel PCA and Kinematics
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Kernel PCA

• PCA involves only linear transformations

– This could be a problem for feature spaces that contain non-

linear manifolds

• As with linear regression and SVMs:

– We can add a set of non-linear transformations on the features

– Then, we can perform PCA on the expanded feature vectors

– The Kernel Trick works here, too!
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Live demo
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