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Constructing Models

• Start with observations (data) drawn from the world

– Motion of an object, force applied to that object

• Models relate different types of observations to one-

another 
𝐹 = 𝑚 × 𝑎
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What Makes a Good Model?

A good model:

• Is simple 

• Explains the observations that have already been made

• Is predictive of future observations
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Machine Learning
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Machine Learning

Fundamentally: ML is about using data to automatically 

construct a model.  We would like:

• The model to produce meaningful output given novel 

situations

• The model to give us insights into the problem
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Example: Brain-Machine Interfaces

• Goal: to develop a direct connection from the brain to an 

advanced prosthetic device

• Approach:

– Electrodes in the primary motor cortex “listen” to individual 

neurons or small clusters of neurons

– Cortical neurons communicate by emitting sequences of pulses 

(“spikes” or “action potentials”) at different rates

– Use a model to decode these pulses in terms of the intent to 

move the arm
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Brain-Machine Interfaces
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Decoding Arm State

Want to predict 

arm motion at 

time t given 

recent history 

of spiking 

behavior
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Decoding Arm State

50ms bins: 20 

descriptors of 

neural 

activation for 

each cell
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Linear Model

Each feature 

(Fi) is a count 

of spikes by a 

neuron for a 

50 ms bin
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…

W
 𝑋(𝑡)

F(𝑡)

 𝑋(𝑡) = 𝑔𝑊 𝐹 𝑡 = 𝑊𝑇𝐹(𝑡)

Column vector encoding 
spike counts for N cells at 
T taps up to time t
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 𝑋(𝑡) = 𝑔𝑊 𝐹 𝑡 = 𝑊𝑇𝐹 𝑡 =  

𝑖=0

𝑁−1

𝑤𝑖 × 𝐹𝑖 𝑡

Linear Model

Each feature 

(Fi) is a count 

of spikes by a 

neuron for a 

50 ms bin
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Training a Linear Model

Gathering the data:

• Monkey makes a sequence of reaches

• Simultaneously observe the movement of the monkey’s 

arm and the neural activity

• This provides a set of example input / output examples for 

our model
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Training a Linear Model

• Linear model works well for this problem:

• Cost function:

• Learning algorithm: pick the 𝑤𝑖 ’s so as to minimize 𝐸
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 𝑋(𝑡) =  

𝑖=0

𝑁−1

𝑤𝑖 × 𝐹𝑖 𝑡
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Using Our Model

Given new observations of neural spiking patterns, we can:

• Predict how the monkey will move her arm

• Use these predictions to drive the motion of the prosthesis
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Classes of Models

Defined by the data type of the output.  Very broadly:

• Continuous output: regression-type models

• Categorical output: classifier models
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Regression-Type Models

• Continuous output

• In our brain-machine interface 

example: what velocity should 

the arm be moving at given the 

recent history of neural activity 

patterns?
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Classification-Type Models

• Classification: given an input, which one of several 

classes does the input belong to?

• Can be crisp (choose exactly one class)

• Or can be probabilistic (each class is assigned a 

probability)
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Classes of Machine Learning Problems

What information is provide at the time of training?
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Classes of Machine Learning Problems

Supervised learning:

• Training set contains input / output (labels) pairs

• Outputs could be continuous, probabilistic or categorical
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Classes of Machine Learning Problems

Unsupervised learning:

• The training set contains only inputs

• Fundamental question: what is the structure of these 

inputs?

– A common case: algorithm assigns categorical labels to each of 

the inputs (this is clustering)

– But we can also ask continuous questions.  For example: are 

there linear or nonlinear manifolds that the data live on?
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• Draw…
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Classes of Machine Learning Problems

Semi-Supervised learning:

• Part of the training set contains input / output pairs

• The rest of the training set contains only inputs

• Using all of the data can yield a better model than if we 

only used the labeled data
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Classes of Machine Learning Problems

Reinforcement learning: 

• Different than direct prediction or classification: RL is 

about taking sequences of actions in some 

environment

• At each step:

– In response to an input, the model (agent) produces some 

action

– The feedback signal is an evaluation of the results of this 

and previous actions
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Classes of Machine Learning Problems

Reinforcement learning: 

• Common reward types:

– How much time did it take to execute an action?

– How much energy did an action take?

– Did the agent win the game?

• Learning problem: for a given input, what is the action 

that maximizes the expected sum of rewards over time?
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Practical Challenges

Modeling Choices:

• Right model and learning algorithm

– Worry about computational complexity in training or querying a 

model

• Hyper-parameters

• Selecting a data set to train from

– Data can be expensive to collect

– Different algorithms require different amounts of data
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Practical Challenges

Overfitting

• Model matches the training data set well, but does not 

perform well on independent data
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• Drawing…

Andrew H. Fagg: Machine Learning Practice 40



Practical Challenges

Overfitting

• Model matches the training data set well, but does not 

perform well on independent data

• How do we detect this?

• How do we mitigate this?

– Some algorithms will handle this automatically

– In some cases, we have to be careful about how we choose our 

training set
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Practical Challenges

Comparing models and algorithms

• Measuring performance of a model

• Performance is inherently a random variable

– Must acknowledge this when we are comparing two models

– This implies that comparison is an empirical process

– Also must acknowledge this issue when selecting hyper-

parameters
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Course Topics

Preliminaries:

• Python

• Jupyter / CoLaboratory

• Pandas

• Numpy

• Scikit-Learn

• Python best practices 
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Course Topics

• Classifiers

– Logistic regression, support vector machines, decision trees

– Feature importance

• Regression

– Linear and non-linear

– Polynomial / kernel regression, support vector regression and 

decision tree regression

• Decision Trees: ensemble methods and random forests
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Course Topics

Unsupervised Methods

• Principal component analysis

• Local linear embeddings

• Multidimensional scaling

• ISOmap

• Clustering: K-Means, Mixture Models
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Course Topics

Tuning Models

• Detecting and mitigating overfitting

• Choosing hyperparameters

• Comparing algorithm types in a statistically sound way
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Course Delivery

• Live lecture

– Slides will be posted to main course web site

• Also an online/asynchronous version of the class: 

5970-995
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Computing Environment

• All homework assignments will be done in Python

• Using Google CoLaboratory for assignments (more 

details to come)

– This interface looks a lot like Jupyter Notebooks

– Key packages pre-installed

– Data and code skeletons available through Google Drive

– You are also welcome to work on your local machine, if you 

wish
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What I am assuming about you…

• Programming background:

– Experience with object-oriented programming

– Python is not a necessary prerequisite, but is a bonus

• Statistical Methods:

– Linear regression 

– Hypothesis testing
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Resources
• Course web page: 
http://www.cs.ou.edu/~fagg/classes/mlp 

• Canvas: grade book, announcements, office hours

• Slack: primary discussion platform

• Text: Aurélien Géron (2020) Hands-On Machine 
Learning with Scikit-Learn, Keras and TensorFlow
(Concepts, Tools, and Techniques to Build 
Intelligent Systems), 2nd edition, ISBN-13: 978-
1492032649, O'Reilly Media

• Web resources: documentation, tutorials, papers 
(linked from the schedule or announced on Canvas)
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Grading

Homework

• 12 assignments (+ one test assignment)

• Explore different ML methods and data sets

• Criteria:

– Success in solving the problem

– Cleanliness of the code (yes, we expect documentation)

No final exam or end-of-semester project
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Proper Academic Conduct

Homework assignments are to be done on your own

• No communication of solutions in any form with anyone 

other than the instructor or TA

• Do not copy code off the net

• General communication with each other or drawing 

inspiration off of the net is okay
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Keys to Success

• Stay on top of lectures and homework assignments

• Learn to read the documentation

• Most assignments will not be doable in the day before the 

deadline.  Start early

• The net is filled with lots of advice about how to do things

– Much of the advice is poor or down-right wrong

– Even when the advice is correct, you should still be able to 

write your own code

• Ask plenty of questions 
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For Next Time

• For today: chapter 1 

• Next time: start of chapter 2

• We will get you started on CoLab, Python and Numpy
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