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Regression

High-level problem definition:

• Supervised learning problem

• In general, inputs can be numerical or categorical data

– For now, our focus is on numerical inputs

• Outputs are numerical
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Regression

Error metrics

• Generally: a function of the difference between ground 

truth and predicted values

• Common: 

– Sum squared error (or mean squared error)

– Sum absolute error (or mean absolute error)
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Brain-Machine Interface Problem
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Brain-Machine Interfaces
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Decoding Arm State

Want to predict 
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Decoding Arm State

50ms bins: 20 

descriptors of 

neural 

activation for 

each cell
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BMI Data Configuration

• Data already cut into 20 independent folds

• Time is continuous, but with gaps

– We kept only valid time periods

• Each sample contains 20 spike bins for each neuron 

– Each count corresponds to 50ms of time

– A single row is a contiguous set of samples (no gaps!)
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Example: Predicting Arm Motion
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Gradient Descent Methods
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Limits of the Normal Equation

• The “Normal Equation” requires the inversion of an       

N+1 x N+1 matrix, where N is the number of features

• This can be really expensive as N becomes large

– And unnecessary if the features are rather sparse
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Gradient Descent Methods

Gradient Descent Approach:

• Guess at an initial set of parameters

• Update the parameters in a direction so that the error 

metric is lowered

• Repeat until error is low enough or stops improving
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Gradient Descent Challenges

• It is hard to tell a priori how many steps will be necessary

• Unclear what the “learning rate” should be

• Computing the gradient of the error with respect to the 

parameters:

– Computation of the gradient is done for each training sample 

– These gradients are then summed together to estimate the 

global gradient

– This is Batch Gradient Descent

– If the training set is large, then this is a computationally 

expensive process
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Writing: error surface 
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Estimating the Gradient

• Stochastic Gradient Descent

– Randomly select a single training example, compute the gradient 

and update the parameters

• Mini-Batch Gradient Descent

– Cut the training set into batches

– Use one batch at a time to compute gradient and update parameters

– Cycle through these batches

• Stochastic Mini-Batch

– Each training step: sample M training examples & use these to 

compute the gradient and update parameters
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Live demo

• Stochastic

• Batch

• Stochastic mini-batch
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Example: Training Sensitivity
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Number of Training Steps

How many training steps do we need for a given problem?

• This is an empirical question

• Can visualize using a learning curve

– Take a small step

– Record performance on a training set and a validation set

– Repeat
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Training Set Size

With our first regression-based models:

• Performance with the training set was high

• But, performance with an independent data set was 

generally quite poor

• In our problem, this is due to a  dramatic over-fit of the 

training data

– Note: 961 parameters and only 1193 samples
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Training Set Size

Whenever we face a new problem, it is very important to ask 
the question of whether we have enough training data

• One approach: train a model with varying amounts of training 
data & ask how the model performs on an independent data 
set

• Sensitive to training set size: you are overfitting and need 
more data

• Insensitive: you have plenty of training data 

Note that this is a model-specific (and hyper-parameter-specific) 
question
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Live demo
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Multi-Regression
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Multi-Regression

• So far, our models have only predicted a single output 

value for a given input

• In practice, we would like to handle entire vectors
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Multi-Regression

Multi-regression is a generalization of regression

• Multiple outputs

• For our linear models, the parameters are completely 

separate from one-another

• Error metric is the sum of errors across the individual 

outputs
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Live demo

• Predict two velocities
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Utility and Limits of Linear Regression
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Linear Regression

Utility:

• Inexpensive to evaluate models

• Can compute the solution to a problem directly (“Normal 

Equation”)

• Gradient descent approach is straight-forward and 

relatively inexpensive computationally

• There is only one minimum in the error space
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Linear Regression

Limits:

• The world is rarely linear

• Would like to capture non-linear effects

• Would also like to constrain the output to match our 

expectations of the valid range of outputs

– For example, if we are trying to output a probability
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Next Steps in Regression

• Non-linear preprocessing of input features

– Otherwise, the model is linear

• Non-linear on the output of the model

– Otherwise, the model is linear

– Logistic regression

• Non-linearities built into the model throughout
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Non-Linear Preprocessing
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Example: Non-Linear Preprocessing
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• CV_M7_L01
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The Overfitting Problem
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Overfitting

• Any situation where a model performs well on a training 

set, but not on an independent data set drawn from the 

same distribution as the training set

• In this case, the learned model has captured the 

peculiarities of the training set, but not the general trend 

of the entire distribution

• Detecting this situation is done by comparing model 

performance on training and independent data
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Sources of Overfitting (or Apparent Overfitting)

• Training set is too small relative to the complexity of the 

model that is being fit

– One clue: # of samples ~ # of model parameters

• Training set samples are not drawn independently

• Training data not actually drawn from the same 

distribution as the rest of the data
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Regularization
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Regularization

Approach: add terms to our cost function that punish 

models that have large coefficients
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Regularization

• LMS: happy with high coefficients

• Ridge: wants to make coefficients small, especially ones 

that are already large

– But, is happy to have very small coefficients

• Lasso: wants to make coefficients small

– Wants to make as many coefficients zero as possible

• Elastic Net: also wants to make coefficients small

– Can walk smoothly between the Ridge and Lasso solutions
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Regularization

• Simple regression problem

• Compare Ridge, Lasso and  Elastic Net Solutions
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Example: Regularization in the BMI Problem
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Regularization in the BMI Problem

• We have already shown that LMS does not perform well 

with small training data set sizes

• How does regularization help with small training sets?
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