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Abstract This paper propose a novel framework for a data
driven grasp planner that indexes partial sensor data into
a database of 3D models with known grasps and transfers
grasps from those models to novel objects. We show how
to construct such a database and also demonstrate multiple
methods for matching into it, aligning the matched models
with the known sensor data of the object to be grasped, and
selecting an appropriate grasp to use. Our approach is exper-
imentally validated in both simulated trials and trials with
robots.
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1 Introduction

Grasping novel objects is a difficult problem that sits at
the intersection of computer science, sensing, and mechani-
cal engineering. Hardware designers have built a number of
robotic hands that are physically dexterous enough to grasp
everyday objects, but the software to effectively use these
hands has lagged.
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The robotics community has expended a great deal of ef-
fort on grasp planning for objects with fully specified ge-
ometry. However, the sensor data realistically available to
robots can produce at best partial models for novel objects.
Such partial 3D models are insufficient for dexterous geo-
metric grasp planning using techniques developed for full
models. In this paper we propose using partial shape match-
ing to bridge between partial sensor data of objects to be
grasped and existing grasp algorithms which require full 3D
models as input.

Data driven methods, which take the point of view that
simple algorithms working on large datasets can match or
even outperform sophisticated algorithms, have been very
successful in such disparate applications as machine trans-
lation and image reconstruction. The key requirement for a
data driven algorithm is the ability to index a large dataset so
that new inputs can be quickly matched to similar instances.
This paper asks the question: is robotic grasping indexable?

We address this problem with a full framework for
data-driven robotic grasping. We show how to construct a
database of grasp knowledge and how to index into it using
partial sensor data of an object in order to retrieve grasps that
performed well on similar objects. We also demonstrate how
to use these retrieved matches for successful grasp planning,
using new tools for aligning the retrieved models to the in-
put data and for choosing the correct grasp to execute from
a set of candidate grasps.

While we are not aware of any previous attempt to con-
struct a large scale grasp database, several researchers have
investigated grasp planning approaches that assume such
a database already exists. Bowers and Lumia (2003) col-
lected grasps for a small number of planar objects and used
fuzzy logic to extrapolate grasping rules. Morales et al.
(2006) computed offline grasps for a small database of gras-
pable objects and successfully identified and executed those
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grasps on real objects in a complex environment. Unlike this
work, their approach requires an exact model of every possi-
ble graspable object. In contrast, Platt et al. (2002) used mul-
tiple control laws to explore the geometry of an unknown
model while grasping it, but did not make use of pre-existing
grasp data. Glover et al. (2008) used a Procrustean shape
matcher to recognize the class of a model to be grasped out
of a database of 11 classes. Saxena et al. (2008) generated
2D renderings of a large set of example objects and learned
a model-free mapping from images to graspable features for
a 2D gripper. Romea and Srinivasa used a small number of
photographs of a scene to recognize multiple occluded ob-
jects at once and successfully grasp those objects (Romea
and Srinivasa 2010), although their system cannot grasp ob-
jects that it has not been trained to recognize.

Other researchers have experimented with different forms
of precomputed grasp knowledge, mapping into a database
of hand poses rather than objects. Li and Pollard (2005) col-
lected a database of 17 hand poses, and used shape matching
to match the inside of a hand to the surface of a graspable
objects. Their work highlighted the difficulty of automat-
ically generating grasps that are both stable and plausibly
humanlike. Aleotti and Caselli demonstrated grasp synthe-
sis using examples acquired with a dataglove (Aleotti and
Caselli 2007). Aydin and Nakajima animated whole-body
grasping postures using a grasp posture database (Aydin
and Nakajima 1999).

A recent trend in grasping has been to approach grasp
planning as an imaging problem, where the goal is to find
2D image features that correspond to “graspable” 3D points.
This is the approach taken by Saxena et al. (2008) and Bohg
and Kragic (2010), both of which assume that there is a di-
rect relationship between how an object looks in a photo and
how it should be grasped. The downside of using texture and
color cues for grasp selection is that grasping is often invari-
ant to appearance. A related approach is to use computer
vision to recognize and orient objects from a fixed imagery
database (Torres et al. 2010); recognition can be achieved
even in the presence of clutter and occlusion, but there is no
ability to generalize to novel objects.

This paper proposes a new framework for data driven
grasp planning that can successfully find form-closure
grasps even when only partial model information is avail-
able. We observe that objects with similar geometry can
usually be grasped in a consistent way. At the same time, we
expect that the total number of object classes is too large to
enumerate by hand, and a successful grasping system must
be able to attempt grasps on novel objects and even novel
object classes. Our hypothesis is that it is not necessary to
recover the exact geometry of an object in order to plan dex-
terous grasps for it. Rather, it suffices to find a number of
similar objects, with known 3D geometry that can be used
as proxies for the actual geometry.

Our framework consists of a number of steps.

Step 1: Creating a grasp database of 3D models anno-
tated with precomputed grasps and quality scores.

Step 2: Indexing the database for retrieval using partial
3D geometry.

Step 3: Finding matches in the database using only the
sensor data, which is typically incomplete.

Step 4: Aligning the object to each of the matched models
from the database.

Step 5: Selecting a grasp from the candidate grasps pro-
vided by the aligned matches

Step 6: Executing the grasp and evaluating the results.

Each step admits a number of possible implementations.
Our framework is modular, and there are multiple good
choices for each of these steps.

In this paper we explore the criteria for choosing com-
ponent algorithms, along with presenting a full grasping
pipeline fleshed out with our particular choices. Our con-
tributions are:

– the data-driven grasping framework just presented,
– the Columbia Grasp Database, which fulfills Step 1 of the

framework,
– two new partial shape matchers based on our novel

CapSet descriptors, for Steps 2 and 3,
– two new alignment methods, for Step 4, and
– a method for ranking candidate grasps by likelihood to

transfer to new objects for Step 5.

We also tested our framework with both depth and inten-
sity sensors and validated the results both in the GraspIt!
(Miller and Allen 2004) simulator and on the HERB (Srini-
vasa et al. 2010) robotic platform (Step 6).

Although some of the work presented here has previ-
ously been presented in other venues (Ciocarlie et al. 2007a;
Goldfeder et al. 2009a, 2009b), this paper attempts to con-
textualize our earlier results in a broader planner frame-
work. It includes a complete grasping system, from creating
a grasp database through executing grasps on a real robot.
Moreover, the new partial shape matching and alignment
techniques of Sects. 7 and 8.2, and the experimental results
described in Sect. 10.2 are additional contributions original
to this paper.

2 Step 1: creating a grasp database

The planner framework described in this paper requires an
indexed database of 3D models. In this section, we describe
the Columbia Grasp Database (Goldfeder et al. 2009a),
which was constructed specifically for this purpose. The
database consists of 3D object models, kinematically accu-
rate robotic hand models, and grasps for each model with
each hand. Although these grasps are distributed with the
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database and are considered to be part of the CGDB, we em-
phasize that nothing about our data-driven algorithms man-
dates a particular generative planner. We strongly encourage
researchers to annotate the database with grasps from other
planners in the same fashion.

2.1 Object models

The first requirement for a grasp database is a set of 3D mod-
els. We chose to reuse the models from the Princeton Shape
Benchmark (PSB) (Shilane et al. 2004), which is already
in common use in the shape matching community. Objects
that could not plausibly be grasped by a human sized hand
were rescaled to “toy” size. To soften the impact of scale,
we cloned each object at four distinct scales, 0.75, 1.0, 1.25
and 1.5, where 1.0 represents the rescaled size from above.
We assume that all objects have uniformly distributed mass,
which impacts both our simulations and our computed qual-
ity measures.

The PSB contains 1,814 models, and so our database
consists of 7,256 discretely scaled models. It is difficult to
reason about the asymptotic performance of a data-driven
method as a function of database size, since not all data
is created equal. Given any particular test object, a small
database that happens to contain similar models will outper-
form a larger database that does not. Nevertheless, we can
attempt to estimate the number of truly distinct shapes that
a good database should cover. In his important work on ob-
ject recognition, Biederman argues that there are as few as
three thousand familiar “entry-level” shape classes that are
encountered in usual environments (Biederman 1995). An
entry-level shape is defined as either the prototypical shape
of a broad object class or the shape of a significantly atypi-
cal class member. Not all of the entry-level classes represent
graspable shapes. Conversely, many entry-level classes will
contain subclasses that will require different grasp strate-
gies. Nevertheless, accepting Biederman’s work as a start-
ing point, we suggest that the number of objects needed for
a truly comprehensive shape database, before considering
scale, is in the thousands.

2.2 Hands

Grasping is strongly hand-dependent. We chose to focus on
three hands; a human hand model in order to emphasize the
“humanlike” nature of the grasp selection, the three-fingered
Barrett hand, which is ubiquitous in robotics research, and
a two-fingered gripper patterned after the Otto Bock pros-
thetic hand and similar in design to the gripper provided with
the PR-2 robotic platform from Willow Garage. The human
hand model has 20 degrees of freedom. The Barrett hand has
4 degrees of freedom, plus a disengaging clutch mechanism
which allows conformance even when the proximal link of a

finger is blocked. The gripper has only 1 degree of freedom,
and so grasp planning for it really means approach vector
planning.

2.3 Material properties

Both in the construction of the database and in our simu-
lation experiments we treated all models as being made of
rigid plastic. There is no exact consensus on the frictional
properties of human skin. We chose the coefficient of static
friction μ = 1.0 as a plausible value for the friction between
the human hand and plastic (Sivamani et al. 2003). The abil-
ity to create stable, encompassing grasps with subsets of fin-
gers is also increased by using soft fingertips that deform
during contact and apply a larger space of frictional forces
and moments than their rigid counterparts. In order to take
into account such effects, we use a fast analytical model for
soft finger contacts (Ciocarlie et al. 2007b) that we have de-
veloped.

The Barrett hand is made of aluminum, but can be coated
with a higher friction material. We modeled two versions of
the Barrett hand, one uncoated and one with rubberized fin-
gers, and computed grasps for them independently. For the
aluminum Barrett hand we used μ = 0.4 and for the rubber
coated version we used μ = 1.0, as these are commonly ac-
cepted lower bounds on the frictional coefficients of the rel-
evant materials with hard plastic. As the kinematic models
are identical, grasps computed for either Barrett model can
be executed using the other, making it possible to evaluate
the advantage afforded by using the higher friction material.

2.4 Grasps

Finding large data sources is a core difficulty of data-driven
algorithms, which perhaps explains why researchers in this
area have tended to work with very limited datasets (Bowers
and Lumia 2003; Glover et al. 2008; Li and Pollard 2005).
The most direct way to construct a grasp database is to col-
lect grasping data from humans but this is prohibitively time
consuming for large scale data acquisition, and in any case
can only produce grasps with the human hand.

The grasps in the CGDB were computed using a modi-
fied version of our Eigengrasps planner (Ciocarlie and Allen
2009; Ciocarlie et al. 2007a). By “Eigengrasps” we mean
a low-dimensional grasping subspace, derived from human
grasp experiments, that has shown promise as an effective
reduced control space for humanlike grasping. Eigengrasps
can be used to reduce the number of DOFs in the control
space of a robotic hand. For multi-fingered anthropomorphic
hands this reduction can be from as many as twenty dimen-
sions to as few as two. It thus becomes feasible to stochasti-
cally sample this low-dimensional grasping parameter space
using simulation techniques, and determine a wide range
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of stable, form-closure grasps on complex objects even for
dexterous hand designs. In Ciocarlie et al. (2007a) we pre-
sented a grasp planning algorithm that optimizes hand pos-
ture by using simulated annealing in eigengrasp space to
find effective pre-grasp postures which are then heuristi-
cally developed into stable, form-closure grasps by clos-
ing the hand in simulation. (A pre-grasp is a pose from the
instance before the hand contacts the object; it represents
“pure” grasp information untainted by conformance to an
exact object.)

One of the main advantages of the Eigengrasps planner
is its flexibility: it can be successfully applied to a wide
range of both object models and robotic hands. As eigen-
grasp definitions encapsulate the kinematic characteristics
of each hand design, the planner can operate on eigengrasp
amplitudes and thus ignore low-level operations and con-
centrate on the high-level task. The reduced dimensionality
framework also enables the use of anthropomorphic models
with more than 20 intrinsic DOFs. The planner can thus op-
erate identically across different hand models, without any
change or parameter tuning. The planner makes no assump-
tions regarding the nature of the target object and can op-
erate on a wide range of 3D models. In addition, simulated
annealing is a stochastic method, and so we can use mul-
tiple runs to find different form-closure grasps for the same
model. These characteristics make it an appealing choice for
building a grasp database across multiple hands and mod-
els.

To construct the database we modified the planner to take
advantage of multicore parallelism. A parent thread searches
the eigengrasp space for likely pre-grasps, using simulated
annealing. For each pre-grasp position that crosses a qual-
ity threshold, a child thread is created to refine it. The child
thread performs a local search with finer step values, at-
tempting to modify the promising pre-grasp into one that
would result in a form-closure grasp if the fingers were to
be closed (potentially leaving the eigengrasp subspace). If
such a pre-grasp is found, the pre-grasp and grasp are saved.
After creating a child thread for a pre-grasp state, the par-
ent thread’s state generation function rejects states close to
the child thread’s search area, forcing it to look elsewhere in
the state space for new grasps. The process continues until
either the desired number of grasps are found, or a preset
time limit is exceeded. We chose to terminate after finding
15 form-closure grasps, or after 20 minutes. For each grasp,
we compute two widely used quality metrics that charac-
terize the Grasp Wrench Space: the ε and volume quality
metrics introduced by Ferrari and Canny (2002).

Our grasp database is intended to be easily visualized in
GraspIt! or a similar grasp simulation tool. As such, we pro-
vide the necessary data to recreate each grasp and pre-grasp,
in the form of joint angles and hand position. We also pro-
vide the contact points between hand and object, which can

be used as a check to ensure that the grasp was simulated
correctly. This first version of the CGDB contains 238,737
distinct form-closure grasps on its 7,256 models.

3 Verification of the data-driven concept

To verify that data-driven grasp planning is feasible, and
specifically that the CGDB contains enough information to
be used for this purpose, we tested a simple grasp planner in
simulation. For this experiment we assumed full knowledge
of the geometry of the model being grasped, and used an
off-the-shelf shape matching algorithm to find similar mod-
els from the CGDB. Grasps from these neighbor model were
then executed on the test object in GraspIt! and analyzed for
form-closure and grasp quality.

3.1 Experiment design

Given a model to grasp α, we use a shape matching algo-
rithm to find N = {n1 . . . nk}, the k models in the database
most similar to α under some shape similarity metric. Our
choice of k-nearest neighbors as a learning algorithm is
due to the problem domain, as in general, the relation be-
tween hand pose and grasp quality for a given object is
both nonlinear and discontinuous, and more sophisticated
learning methods such as SVMs have so far been shown
to work only for simple objects (Bowers and Lumia 2003;
Pelossof et al. 2004). We experimented with 3 choices for
the shape matching algorithm. In each case we used k = 5
neighbors.

First, we matched models based on the L2 distances be-
tween their Zernike descriptors (Novotni and Klein 2003),
which we have previously shown to be scalable to very large
libraries of 3D models (Goldfeder and Allen 2008). These
descriptors are computed on voxel grids and are quite ro-
bust, making them suitable for use in matching newly ac-
quired objects into the database. Second, we matched mod-
els using the hand-labeled classification that is provided with
the Princeton Shape Benchmark. We refer to these object
classes as the “PSB classes.” This method of indexing, while
not usable for arbitrary unclassified models, approximates
the performance of a theoretical ideal shape matching algo-
rithm. For our third method, we randomly selected k mod-
els from the database and designated them as ‘unordered’
neighbors.

All 3 shape matching methods ignore scale, but as de-
tailed in Sect. 2.1, each PSB model exists in our database at
4 distinct scales. For each ni we consider up to 2 models,
n<

i , the largest neighbor smaller than α and n>
i , the smallest

neighbor larger than α, using a scaled approximate radius.
In the case of α smaller or larger than all 4 versions of the
neighbor we only used one model for ni . For simplicity in
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Fig. 1 Three example models
and their grasps, using the
database-backed planner with
Zernike neighbors. For each
model α (left), the top row of
images shows a neighbor from
the database and a pre-computed
grasp on that neighbor. Directly
below each neighbor is the same
grasp executed on α, along with
its grasp wrench space ε quality
measure (Ferrari and Canny
2002)

the ensuing discussion, we have ignored the issue of scale
and treated each ni as a single model.

To take a grasp computed on one model and execute it on
another model, we need to find the transformation between
their respective coordinate systems. In this verification ex-
periment, we used PCA to align α with its neighbor models
by aligning their principal axes and collocating their centers
of mass. For each saved grasp, we place the hand in the pre-
grasp position and check if it is in collision with α. If the
palm is in collision, we move the hand backwards along the
approach vector until it is out of contact. If any of the fin-
gers are in collision, we open the finger until the collision is
resolved. Finally, after the hand posture is collision-free, we
move forward until any part of the hand contacts α, at which
point we close the fingers.

To illustrate the behavior of this algorithm, we provide a
number of examples in Fig. 1. On the left side of the figure

are three simulated objects for which we wish to find grasps.
To the right of each object are several example grasps from
the database, with the top row showing a grasp on a neigh-
boring model from Zernike shape matching, and the bottom
row showing that same grasp transferred to the desired ob-
ject after PCA based alignment. All of the grasps are form
closed (in some cases due to the simulated frictional effects).

3.2 Results

We ran the experiment separately for each type of neighbor
selection and averaged the grasp quality of the nth best grasp
on each model over all 1,814 models in the database at scale
1.0. Figure 2 shows results for the human hand and the Bar-
rett hand, as compared with the results of the Eigengrasps
planner of Ciocarlie et al. (2007a). While there was little
difference between the Zernike descriptors and the hand-
labeled PSB classification in regards to grasping, there was
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Fig. 2 The nth best grasp from database-backed grasping with 3 neighbor selection methods and from the Eigengrasps planner, averaged over the
1,814 models in the database at scale 1.0

a noticeable improvement for those methods as compared to
the “unordered” matches. This was particularly true for the
high-DOF human hand.

It is important to recall that the “unordered” results are
merely random matches, not random grasps. The query ob-
ject α has still been axis-aligned with a model of similar
scale, and the grasps borrowed from that model were all
known to produce form-closure. Our results suggest that the
importance of proper shape matching correlates with the
complexity of the hand’s pre-grasp space (that is, with the
number of DOFs).

Of special interest is the comparison between the database
backed methods and the Eigengrasps planner. For the first
few grasps, the performance of the shape matching methods
is essentially identical to that of the Eigengrasps planner.
However, for subsequent grasps the quality quickly diverges,
with the advantage going to the database-backed methods.
This is even more impressive when we note that the eigen-
grasp planner ran for approximately 10 minutes per model,
whereas the database-backed planners ran for about 20 sec-
onds. The database-backed approach can take advantage of
pre-computed grasp data from multiple objects, essentially
extracting the useful information obtained from several runs
of the Eigengrasps planner.

Beyond planning time, the database backed planners are
able to produce more good grasps for the same object than
the Eigengrasps planner is. The advantage of this may not
be immediately obvious, since at the end of the planning
pipeline we will only be executing one grasp. In reality, how-
ever, many of the grasps returned by these planners will not
be achievable due to obstacles or kinematic limitations of the
robotic arm that must bring the hand into grasping position.
A planner that produces more stable poses is more likely to

produce at least one reachable pose. More importantly, even
if all the proposed grasps are reachable, the notion of “best”
in Fig. 2 is calculated purely in terms of simulated grasp
quality. In Sect. 9 however, we explain that high grasp qual-
ity is a necessary but not sufficient condition for identifying
whether a grasp is likely to generalize well to other objects.
Again, the more candidate grasps we have available, the bet-
ter our chances of finding a grasp that will generalize well
to novel objects.

3.3 Using real sensor data

As an additional experiment, we scanned a small number of
objects with a NextEngine 3D scanner and planned grasps
for them based on their Zernike neighbors from the database.
Figure 3 shows results for a toy chicken. Starting with this
real sensor data, we were consistently able to find stable sim-
ulated grasps for the scanned objects with both the human
and Barrett hand models, with strong ε quality scores.

This experiment was important both because it dem-
onstrated that our approach could be applied to real data and
because unlike the previous experiments, the objects to be
grasped did not map into any PSB classes, and had no ob-
vious neighbors in the database to borrow grasps from. Our
results demonstrated that grasping, as a function of shape,
could successfully transfer between semantic classes.

Recall from Sect. 1 that Step 2 of our pipeline is index-
ing the database for retrieval and Step 3 is matching into
the database using incomplete sensor data of the object. In
these experiments we indexed the CGDB using the Zernike
descriptors of each model and we scanned the object from
a number of directions and registered the scans into a sin-
gle point cloud. This was necessary because the Zernike de-
scriptors are sensitive to the location of the center of mass.



Auton Robot (2011) 31:1–20 7

Fig. 3 Grasps for a toy chicken
sensed with a NextEngine 3D
scanner, transferred from
Zernike neighbors, along with
the ε quality of the grasp as
applied to the scanned model

They can match shapes with missing data or holes (as is the
case in Fig. 3), but the holes must be roughly evenly dis-
tributed around the object. In the following section we pro-
pose partial shape matching algorithms that do not have this
limitation.

4 Step 2: indexing the database for partial sensor data

Our work centers on matching 3D models against partial
sensor data. By sensor we are specifically referring to an
imaging sensor or camera, which can record a 2D intensity
or 3D depth value for each pixel in an imaging plane. For
consistency, we will refer to the output of such a sensor as
a “view”, subsuming the more specific words “image” and
“scan” which imply 2D or 3D data sensor data respectively.
We are interested in retrieving 3D models that are “similar”
to an object based only on a subset of views that do not cap-
ture the object from every direction.

Matching with partial sensor data is not identical to
matching with partial model geometry. Partial sensor data
contains more information than the partial model alone in
that it distinguishes between known empty space and un-
sensed space. Some recent work in partial shape match-
ing has made use of views from simulated sensors (Chen
et al. 2003; Makadia et al. 2006; Ohbuchi et al. 2008;
Papadakis et al. 2010) but in each case the matching algo-
rithms assume that the sensors can be placed at any point in
space with a degree of precision that is unlikely to be achiev-
able on a robotic platform.

We assume that this sensor is mounted on a robot that has
some degree of mobility relative to the object being sensed,
and can therefore move its sensor to multiple viewpoints that
are “near” each other. The notion of “nearness” will be for-
malized below. Beyond this, we do not assume any partic-
ular sensor and the principles we propose can be applied a
variety of sensor modalities such as lidar, structured light,
stereo reconstructions, or even monocular photos.

Our matching approach builds on the work of Ohbuchi
et al. (2008). They described a 3D model using a single bag-
of-features (Nowak et al. 2006), encoding features drawn

from many views of the model in a single histogram. In
matching algorithms, a bag-of-features is a histogram of
“expected” features. When processing a model, each ob-
served feature is replaced with the most similar feature from
a predetermined “codebook” of common features. A fre-
quency histogram can then be constructed over the fixed set
of codebook features, and this histogram, or “bag,” serves as
the model’s signature.

The features used in Ohbuchi et al. (2008) were SIFT de-
scriptors (Lowe 1999) collected on simulated depth scans
from 40 views around the model. The codebook of expected
features was created by clustering features from a set of
training models and using the cluster centers as exemplars.
By comparing histograms based on their Kullback-Leibler
divergence (Kullback and Leibler 1951), they were able to
successfully match complete 3D models to complete 3D
models.

4.1 CapSet descriptors

If, instead of collecting sensor images from all around an
object, we used only a subset of views, we would have a bag-
of-features histogram that represented only those parts of the
model that were visible from that subset of views. Since it
is infeasible to consider every possible subset of views, we
consider only sets of views such that all views in the set
are looking at the center of the object along view vectors
that intersect a single spherical cap of the object’s enclosing
sphere. We can identify a spherical cap by its center point v

on the sphere and by the solid angle � that it subtends.
We extract features from each of the views in a set and ag-

gregate them into a single bag-of-features. Note that we are
using the generic word “features” without specifying what
these features are, as many choices are available beyond
SIFT. We use the notation Cap�(v) to refer to the feature
histogram drawn from viewpoints on the spherical cap cen-
tered on v and subtending the solid angle �, as illustrated in
Fig. 4. For notational convenience, we refer to the histogram
collected from only a single view v, as Cap0(v).



8 Auton Robot (2011) 31:1–20

Fig. 4 A Cap descriptor of a 3D object captures how the object ap-
pears from a particular set of viewpoints. The Cap is a function of the
object, the starting or central viewpoint, and the range of motion avail-
able to the sensor around that viewpoint

We define the “CapSet� descriptor” of a model as the
set {Cap�(v) ∀v}. A complete sphere subtends 4π steradi-
ans, and so the CapSet4π descriptor contains only a single
histogram that incorporates features from all viewpoints. If
the features which we use from each image are SIFT de-
scriptors, then the CapSet4π descriptor is identical to the
histograms used in Ohbuchi et al. (2008).

If we take v to be the initial location of a robot’s mov-
able sensor, and the spherical cap to represent nearby posi-
tions that the sensor can be moved to, then we can think of
CapSet�(v) as encoding the portion of the object that the
robot is able to see. If � = 4π the sensor can be moved
anywhere around the object, whereas if � = 0 the sensor is
fixed and cannot be moved at all. This simplified represen-
tation of the robot’s workspace assumes that the robot can
move equally in any direction and that the sensor is always
pointed at the same point, regardless of where the center of
projection moves, assumptions which greatly simplify the
matching algorithm.

There are an infinite number of points on a sphere, and
so CapSet�,� < 4π is an infinite set as well. Suppose that
we have computed feature histograms for a set of views
V which are distributed (approximately) uniformly on the
sphere. Given a view v ∈ V and a solid angle �, we can
approximate Cap�(v) by simply adding the histograms of
all sampled views that are within the cap of size � centered
on v.

The number of possible Cap descriptors—that is, an ap-
proximation of the CapSet—is just |V |. The CapSet match-
ing examples described in this work all have |V | = 60, with

views chosen as the vertices of a truncated icosahedron sur-
rounding the model. From this point forward we will use the
Cap�(v) and CapSet� notations to refer to these sampled
approximations.

The number of useful values of � is also a function of
the set of views V , since the difference between the Cap
descriptors for two different values of � is only distinguish-
able if the difference in cap size is large enough to include
at least one additional sampled viewpoint. If we assume that
the centers of projection for each viewpoint in V are ap-
proximately equally spaced on the enclosing sphere, then
the number of distinguishable ranges of � is a function of
|V |.

4.2 Indexing with CapSet descriptors

Indexing a 3D model database using CapSets is a two step
process. First we construct a codebook by taking simulated
sensor views of each model in the database, extracting fea-
tures from the views, and clustering the results into a small
set of representative features.

Algorithm 1 BUILDING A FEATURE CODEBOOK

Require: Training set of 3D models, Models, set of spaced viewpoints
Views

Features ← {}
for all m ∈ Models do

for all v ∈ Views do
Features ← Features ∪

EXTRACTFEATURES(SIMULATESENSOR(m,v))

end for
end for
Codebook ← CLUSTER(Features)

Then we compute Cap descriptors for each model. We
need only compute Cap0 descriptors, as for all other values
of � the Cap� descriptors can be obtained by simply aggre-
gating the Cap0 histograms associated with each view that
is within the view set.

Algorithm 2 BUILDING A 3D MODEL INDEX

Require: Set of 3D models to index Models, set of spaced viewpoints
Views, feature codebook Codebook

for all m ∈ Models do
for all v ∈ Views do

Features ← EXTRACTFEATURES(SIMULATESENSOR(m,v))

CAP[m,v] ← FREQUENCYHISTOGRAM(Features,Codebook)
end for

end for



Auton Robot (2011) 31:1–20 9

5 Step 3: finding matches in the database with CapSets

Having constructed the index, we can now match acquired
sensor data into the database. Starting with sensor views of a
novel object to be matched, we extract features from all the
views and construct a single Cap from them. We determine
the approximate value of � based on how far apart the sen-
sor viewpoints were. The CapSet� of each database model is
constructed on the fly from the CapSet0 histograms, and the
sensed Cap is compared against each Cap in each CapSet.

Algorithm 3 MATCHING WITH CAPSETS

Require: Database of 3D models with Cap0 descriptors, acquired
sensor views SensorViews of a new object, simulated views
SimulatedViews[model] for each model in the database.

Features ← {}
for all s ∈ SensorViews do

Features ← Features ∪ EXTRACTFEATURES(s)

end for
� ← ESTIMATEOMEGA(SensorViews)
CAP�[SensorViews] ←

FREQUENCYHISTOGRAM(Features,Codebook)

for all model ∈ Database do
for all center ∈ SimulatedViews do

ViewsWithinCap ←
simulated views in the cap of size � centered on view

for all v ∈ ViewsWithinCap do
CAP�[model, center]+ = CAP0[model, v]

end for
Score[model, center] ←

D(CAP�[SensorViews], CAP�[model, center])
end for

end for
return Score

The CapSet matching examples described in this work
all have |V | = 60, and N = 1814, the number of 3D models
in our database, and so a linear search for the best matches
for a given Cap returned nearly instantaneously. For larger
databases, the problem reduces to nearest neighbor search
in a k-dimensional space where k is the number of his-
togram bins, and many efficient approximate solutions are
known (Liu et al. 2004).

Note that we have used the distance D between Caps
without defining it. This is because the best choice of func-
tion D will depend on the underlying features used to build
the Caps. We define a D below for each set of features that
we used.

Our planner framework is modular and can be imple-
mented with multiple matching and alignment methods. In
the next two sections we demonstrate two implementations
of this pipeline, one using SIFT features as in Ohbuchi et al.
(2008) and one using Shape Context features (Belongie and
Malik 2000).

Fig. 5 Precision/Recall plots for CapSet descriptors with 5 values of
�, as compared to Zernike descriptors

6 Steps 2 and 3: implementation with SIFT CapSet
descriptors

A SIFT descriptor, as introduced by Lowe (1999), is a his-
togram of the dominant gradient orientations over a set of
small subimages, each corresponding to a histogram bin,
centered around a point of interest. These feature points are
detected in a scale-invariant fashion as the extrema of a Dif-
ference of Gaussians filter applied over multiple scales. Al-
though this method was designed for photographs it can be
applied directly to depth images, where we treat depth as
greyscale color.

Figure 5 shows the precision/recall values (computed on
the “test”1 classes of the Princeton Shape Benchmark) for
CapSet descriptors built on SIFT descriptors, with 5 � val-
ues, ranging from 0 (features drawn from a single image) to
4π (features drawn from the full sphere), one from each dis-
tinguishable set as described above. When comparing two
models in this plot, we take the minimum pairwise distance
between Cap descriptors in each of the two CapSets as the
overall distance between the models, and so these plots can
be thought of as partial matching results using the “most de-
scriptive” viewpoint for each model.

While the choice of viewpoint is indeed important for
small values of �, as � increases it becomes less so, since
more of the model is seen from any starting viewpoint. In
practice we have found that for � ≥ π , which translates to
viewpoints covering at least 25% of the object, nearly all

1The Princeton Shape Benchmark is divided into a “train” set for ex-
perimenting with new features and training retrieval models, and a
“test” set for reporting standardized precision/recall scores.
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viewpoints are “good enough” and the choice of |V | does
not significantly impact the resulting matches. For compar-
ison, Fig. 5 also includes the plot for the Zernike descrip-
tors (Novotni and Klein 2003) we used in Sect. 2.

6.1 A distance function for SIFT CapSets

The partial sensor data that we can acquire from a robot may
always be thought of as comprising a single Cap descrip-
tor, where Omega depends on how far apart the collected
views are when projected onto the enclosing sphere. Col-
lecting more images within the workspace of the sensor will
result in a better sampling of the feature space, but as shown
in Fig. 5 the method can degrade gracefully even to a single
view. Crucially, we do not assume that the sensed portion
of the object has been sampled consistently by the collected
views; some parts of the object that should be visible from
within the workspace of the sensor may have been seen by
multiple views, and some parts may have only been seen by
one view or by none.

The repetition of features between closely space view-
points is to be expected, and may be considered a sampling
artifact rather than a feature of the model. This means that
unlike Ohbuchi et al. (2008), where the view sampling was
simulated and known to be consistent across models, we
cannot construct our histograms based on the raw feature
count. Instead, for the SIFT-based CapSets we use binary
histograms, using the simple absence/presence rule that was
shown to perform well in Nowak et al. (2006). In this way,
if the same feature is seen multiple times it will still only be
counted once, solving the problem of uneven sampling.

As a side effect, this allows us to use the Jaccard dis-
tance (Jaccard 1901)

Jδ(A,B) = |A ∪ B| − |A ∩ B|
|A ∪ B| (1)

as D, the distance between Cap descriptors, avoiding the
need for normalizing empty bins associated with many other
histogram distances.

7 Steps 2 and 3: implementation with Shape Context
CapSets

To highlight the modularity of our framework, we also im-
plemented Steps 2 and 3 with a different feature descriptor
that works in the space of 2D image data rather than 3D scan
data. A Shape Context descriptor (Belongie and Malik 2000)
is a log-polar histogram of vectors from a feature point to all
edge points in an image. Traditionally the feature points at
which this descriptor is computed are just the edge points
themselves. Like SIFT descriptors, Shape Contexts can be

Fig. 6 Precision/Recall plots for SIFT CapSet descriptors and Shape
Context CapSet descriptors. In both cases we are using CapSet4π

rotationally normalized by subtracting out the gradient cal-
culated at the feature point from all measurements.

Unlike SIFT features, which must be extracted from
depth images if they are to encode geometry rather than tex-
ture, Shape Context descriptors can encode geometry based
on 2D silhouette images. We found that Shape Context-
based CapSets computed on the 2D silhouettes of objects
outperformed the SIFT-based CapSets even in simulation
where the depth images used for the SIFT method are noise-
free, as can be seen in Fig. 6.

One weakness of the Shape Context based method is that
by choosing silhouette edges we can only distinguish objects
up to their visual hulls. We could use internal edges from
depth images, but as mentioned we wish to avoid working
with depth images in order to avoid the associated noise.
We performed simulation experiments where we used both
silhouette edges and internal non-silhouette depth edges to
compute Shape Context CapSets. We found no statistically
significant difference between the precision/recall curves (as
measured over the “test” portion of the Princeton Shape
Benchmark). In practice, then, when we refer to Shape Con-
text features in this work we are referring specifically to
those calculated on the silhouette edges.

7.1 A distance function for Shape Context CapSets

The binary histograms used for SIFT-based CapSets in
Sect. 6.1 could not be used for the Shape Context CapSets.
Shape Contexts are computed at every edge point rather
than at a small number of feature points. Spurious one-off
features are to be expected (but are drowned out by much
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larger numbers of expected features), and computing ab-
sence/presence binary histograms would result in most of
the bins being full and the Jaccard distance becoming essen-
tially useless.

Given a set of views, we created a histogram for the fea-
tures from each individual view, normalized them to sum to
1 and then averaged them into a single histogram. This his-
togram is the Cap descriptor for those views.

To compare two Shape Context Cap descriptors A and B

we use the χ2 histogram distance.

D(A,B) =
∑

bin a∈A, bin b∈B

(a − b)2/(a + b) (2)

where we normalize for empty bins by ignoring any terms
in the summation where a + b = 0.

Having defined D for Shape Context-based CapSets, we
can take 2D images of an object, segment out the object sil-
houette, and match using the same Algorithm 3 as above.

8 Step 4: aligning the object to the matches

Given sensor data of an object from a set of views, we can
use Algorithm 3 to find matching models from the database.
Step 4 of our framework is to align the pose and scale of a
matched model to the sensor data of the object to be grasped.
This is an important step if we are to transfer grasps from the
model to the object represented by the sensor data. Addi-
tionally, alignment quality scores, while expensive to com-
pute, are generally more representative of similar geome-
try than the shape descriptor scores we have used to do the
matching (be they Zernike descriptors, CapSet descriptors,
or most of the available alternatives). Thus, after aligning
the top matches from the matching step, we can rerank the
returned models by the cost of alignment and keep only the
top few results after reranking.

There is a good deal of literature on depth scan regis-
tration (Gelfand et al. 2005; Makadia et al. 2006; Salvi et
al. 2007), but our problem is somewhat different, as we
are attempting to align a partial set of views of one model
with the geometry of a different, neighboring model, rather
than with an overlapping scan of the same model from a
different viewpoint. Many researchers have proposed align-
ment methods that find correspondences between local fea-
tures (Huber and Hebert 2003; Johnson and Hebert 1997).
We prefer to avoid methods that build upon local feature cor-
respondences since globally similar models may have few
local correspondences suitable for alignment.

We propose two algorithms for this alignment step,
one suitable for the depth images used in our SIFT based
pipeline and one suitable for the silhouette images used in
our Shape Contexts based pipeline.

Algorithm 4 ALIGNING SIFT-BASED CAPSETS

Require: Cap� c containing features from sensor data, CapSet� M

containing all Cap� descriptors for some database model.

for all Cap�m ∈ M do
if D(c,m) < DISTANCETO[BestMatch] then

BestMatch ← m

end if
end for
for all θ ∈ (0,4π) do

if SILHOUETTEDIFFERENCE(c, ROTATE[m,θ]) <

SILHOUETTEDIFFERENCE[c, ROTATE[m,Bestθ] then
Bestθ ← θ

end if
end for
return ITERATIVECLOSESTPOINT(c,BestMatch)

8.1 Alignment using SIFT CapSets

We can break alignment into a coarse stage and a fine stage,
with the fine stage consisting of the Iterative Closest Point
(ICP) (Rusinkiewicz and Levoy 2001) algorithm. The chal-
lenge is choosing a coarse alignment as input for the ICP
stage. Algorithm 4 shows how we can use the Cap descrip-
tors themselves to produce a good initial transformation. We
align the center of mass of the sensed point cloud with the
center of mass of the 3D model as a first approximation.

Given a Cap “c” representing the partial data and a
CapSet “M” representing the database model, we can find
the viewpoint v that minimizes their distance as

v = arg max |c ∩ m|, m ∈ M (3)

where c is held fixed. We assume that c and v represent the
same part of their respective objects, and so we rotate the
models so that the center viewpoints of both the c and v

lie along the same ray from the origin. The ambiguous roll
about the view vector is resolved by taking silhouettes of
both models from the shared view direction and template-
matching the rotations to find the best overlap.

The output of this stage is an initial alignment which
can be refined by ICP. Scale is found by using the extent
of the principal axis of the sensed point cloud, and scaling
the database model to have the same extent. Figure 7 shows
alignments between real sensor data of a wineglass and the
5 best matches of the wineglass using SIFT CapSets.

8.2 Alignment using Shape Context CapSets

The alignment algorithm of Sect. 8.1 uses ICP and there-
fore implicitly assumes that the sensor data can be converted
into 3D points. This is not the case for the 2D silhouette im-
ages we use for the Shape Context-based matching, and so
another alignment algorithm is needed.

We propose a silhouette alignment algorithm that is pat-
terned after bundle adjustment (Triggs et al. 2000). In classic
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Fig. 7 (Color online) Alignment via matching Cap centers and refine-
ment with ICP. Left, depth images of a wineglass, using a NextEngine
laser scanner. Top right, five matching models from the database. Bot-

tom right, the same models, scale and pose aligned with the sensed
wineglass, using this alignment method. The sensor data is shown in
red, and the aligned database match is in blue

Algorithm 5 ALIGNING SHAPE CONTEXT CAPSETS

Require: Sensor views Views, 3D model from database Model.

Grid ← Empty voxel grid
for all v ∈ Views do

Silhouette[v] ← GETBINARYSILHOUETTE[v]
Extrude Silhouette[v] into Grid

end for
VisualHull ← cells of Grid that were hit by all views
Estimate ← ESTIMATEFROMHULL(VisualHull,Model)
return OPTIMIZE(ALIGNMENTCOST(Views,Model,Estimate))

Algorithm 6 SILHOUETTE ALIGNMENT COST

Require: Sensor views Views, 3D model from database Model, align-
ment estimate Estimate.

Score ← 0
for all v ∈ Views do

ModelRender ← SIMULATESENSOR(Model, v)

for all Pixel p ∈ the simulated sensor do
if ModelRender[p] �= v[p] then

Score ← Score + (DISTANCETOSILHOUETTE(p, v))2

end if
end for

end for
return Score

bundle adjustment, local feature correspondences are found
in multiple images, and multivariate optimization is used
to find extrinsic parameters for the cameras that cause the
back-projection of the 3D locations of the feature points to
match the observed data.

In our case we do not have feature correspondences be-
tween the sensed object and the candidate model matched
from the database, and as we have mentioned it is possible
that such correspondences do not exist. Furthermore, since
the images were taken by a robot we can assume that their
locations are known and optimize only over the position and

scale of the model that best aligns with the partially sensed
object.

Instead, we propose a new alignment method, which is
detailed in Algorithm 5. We project the silhouettes from
each camera through a voxel grid and record voxels that
were seen as full by all views. What is left in the grid is
the approximate visual hull of the object, a conservative re-
gion that contains the object somewhere within it. The vi-
sual hull can overestimate the scale of the object, but we
use it as a first approximation, scaling our candidate model
to match the size of the visual hull and aligning its principal
axes with the principal axes of the visual hull. To avoid the 4
way ambiguity in the principal axes transform, we treat each
possibility as a potential match and perform the full align-
ment for it. We then use alternating iterations of Levenberg-
Marquardt and Threshold Acceptance (Dueck and Scheuer
1990) (a variant of Simulated Annealing that is known to
converge faster) to improve the estimated alignment. Scale
and 6D pose are optimized for at the same time.

Algorithm 6 shows our cost function, which is based on
the back projection of the model’s silhouette into each cam-
era position, rather than the back projection of individual
features. We compute what the silhouette of the database
model would be from each viewpoint and penalize each
pixel in the back-projection that differs from a pixel in the
sensed data by the squared Euclidean distance to the nearest
silhouette edge pixel. Figure 8 shows an alignment example
using this method.

Figure 9 shows a full implementation of our pipeline us-
ing Shape Context features. For each of the three models
shown, a robotic arm took a small number of photographs (in
these examples, 9) that covered approximately 25% of the
space of views. The images were reduced to binary silhou-
ettes. Shape Context features were extracted from them and
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Fig. 8 Alignment via multivariate optimization of back projections.
In this example we use 9 camera views of a mug. The views are
space-carved to get an approximate visual hull, which provides an esti-
mated initial location and scale for aligning a 3D mug model from the

database to this data. The estimate is refined by minimizing the differ-
ence between the mug’s silhouettes and the back projections of the 3D
model, resulting in an alignment of the 3D model with the sensor data
for the mug

Fig. 9 Examples of sensor data, matching, alignment and grasp selection

collected into a single Cap� descriptor, which was matched
into the database. The top 10 matches were aligned with the
sensor data, and the 3 matches with the best alignment are
shown. To illustrate the accuracy of the alignments, these

alignments are also shown overlaid on the visual hulls of the
sensor images. Finally, we show a simulated grasp for the
object transferred from the best aligned model. In these ex-
amples, the selected grasp was simply the grasp with the
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highest quality from the best aligned matching database
model. In the following section we show a more robust
method of selecting a grasp from the available candidates.

9 Step 5: selecting a grasp

Not all of the grasps in the CGDB generalize well to neigh-
boring models. Some grasps rely on very specific features
of a model and would not work on even a very close neigh-
bor if those features were removed or changed. Ideally we
would like some way to detect this situation, so that we can
output only “generalizable” grasps that are likely to work on
the new object.

Algorithm 7 COMPUTING GRASP GENERALIZABILITY

Require: Database of 3D models with associated grasps.

for all m ∈ Database do
Neighbors ← SAMEPSBCLASS[m]
for all g ∈ GRASPS[m] do

Score[g] ←
∑

n∈Neighbors

GRASPEPSILONQUALITY(g,n)

end for
end for

Given a set of candidate pre-grasps drawn from neigh-
bors, how can we know how generalizable they are? If a full
3D model were available we could simulate all of the candi-
dates on the model and measure this directly, but absent such
a model we need an indirect way to predict which grasps to
output.

Our solution is to “cross-test” grasps between neighbor-
ing object, as shown in Fig. 10. For each model in the
CGDB, we found 5 neighboring objects using the ground
truth classification that the CGDB inherits from the Prince-
ton Shape Benchmark. We simulated the candidate pre-
grasps from the model on its 5 neighbors and ranked the
pre-grasps by the number of neighbors for which the pre-
grasp resulted in form-closure. Within each rank, we further
ordered the grasps by the average Ferrari-Canny ε-quality of
the form-closure grasps (including the quality on the model
itself).

Algorithm 7 is run offline over the database to associate
a generalizability score with each grasp.

A grasp that is highly generalizable can be expected to
work well on multiple objects in the same class, and so we
hypothesized that this ranking would correlate with the like-
lihood that a given pre-grasp could be transferred success-
fully to a novel object.

Fig. 10 For each grasp in the CGDB, we can measure generalizability
by how well it transfers to similar CGDB models. A grasp on a model
in the database is transferred to similar models (as defined by the PSB
classes) and scored by how many neighbors it transfers to with form–
closure

10 Step 6: executing the grasp

We evaluated our framework both in simulation and on a
real robotic platform. The advantage of simulation based ex-
periments is that the results can be analyzed numerically in
ways that cannot easily be replicated on a real robot, while
the advantage of robot experiments is that they verify that
our approach works in the real world, with real sensor noise
and robot error.

10.1 Simulation experiments

We tested our SIFT-based pipeline using a simulated Barrett
hand in GraspIt! (Miller and Allen 2004). As in Goldfeder et
al. (2009a) we report aggregate results over the 1,814 scale
1.0 models of the CGDB. For each model, we constructed
6 Capπ descriptors using SIFT features, each centered on a
viewpoint perpendicular to a face of the oriented bounding
box. This was done so as to demonstrate the robustness of
the method to the choice of views. While we do have full 3D
models of each CGDB object, our matching and alignment
methods were only given the partial geometry visible from
the viewpoints of the input Cap.

For each of the 6 Cap descriptors we found 3 nearest
neighbors2 from among the other models of the CGDB. We
cross-tested the grasps from each neighbor model on the

2As described in Goldfeder et al. (2009a), each neighbor could actu-
ally represent two models, since we have four scaled versions of each
CGDB model and we use both the smallest version larger than the test
object and the largest version smaller than the test object, if both are
available.
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Fig. 11 Static and dynamic grasp analyses, averaged over grasps
planned on the 1,814 models in the CGDB. We report the percentage
of form-closure grasps within the first 5 ordered candidates, averaged
over the 6 sets of view. The error bars show the standard deviation be-
tween the views, which we note is very small

other neighbor models, and ranked the grasps as described
in the Sect. 9. We simulated the highest ranked grasps on the
full 3D geometry of the object to test their quality.

We evaluated the candidate grasps in two ways. For
“static” analysis we placed the hand in the pre-grasp posi-
tion and closed the fingers until contact. If this pose resulted
in a form closed grasp we reported success. Static analysis
is very conservative, often failing on grasps that appear vi-
sually correct, as it does not allow for the possibility of the
object moving within the hand as grasp forces are applied.
For this reason, we also employed “dynamic” analysis, using
a time-stepping numerical integration to compute the move-
ments of all the bodies in the system, including robot links
and the object being grasped, based on the actuator forces
applied at the joints of the hand. For full details on our sim-
ulation methodology we refer the reader to Miller and Allen
(2004).

Dynamic analysis allowed us to see the outcome of the
grasp in the presence of friction, joint constraints, inertial ef-
fects, and the movement of the object. We are interested only
in the intrinsic quality of the grasp, and so we do not simu-
late the surface that the object lies on or other environment-
specific properties of the system. Approximately 15% of the
models in the CGDB exhibit problematic topology, such as
triangles with inconsistent windings or surfaces with jagged
unclosed edges. These models could not be analyzed by the
dynamic method, and so we report dynamic results only for
the 85% of the models that we could process.

Figure 11 shows the results for static and dynamic anal-
ysis of the grasps chosen using each of the 6 sets of views.
We report the percentage of models that were successfully

grasped within the first n selected grasps as ranked by our
cross-testing approach, averaged over the 1,814 models in
the database, and averaged again over the 6 sets of views
we tested with the error bars representing the standard de-
viations of the second average. It is apparent from the very
small standard deviations that the choice of view does not
materially affect the likelihood of finding a form-closure
grasp.

10.2 Robot experiments

We also evaluated our data driven grasping framework using
HERB, the home exploring robotic butler platform jointly
developed by Intel Research and Carnegie Mellon Univer-
sity (Srinivasa et al. 2010). HERB is a mobile robot mounted
on a Segway base. It has a Barrett hand mounted on a Barrett
WAM arm. The palm of the hand has been augmented with a
2 megapixel webcam, which we used as our sole sensor. The
experimental platform and environment along with some of
our results can be see in the video submission which accom-
panies this paper, which is also available for download from
supplementary video.

Our experimental goal was to grasp and lift novel objects
(that is, objects that we did not have 3D models of) based
only on a small number of images taken with the palm cam-
era. Each object was placed on the table, and the full experi-
ment from sensing through grasping was performed without
human intervention. To separate the object from the back-
ground in the 2D images (and therefore to find the silhou-
ette edges) we use background subtraction based on photos
of the table environment that had been previously collected
without the object present.

We sent the camera to three fixed locations that roughly
approximate a spherical cap of π steradians centered on the
robot’s workspace, with some missing data due to the small
number of pictures. All of the views are from above, and so
the objects were able to have significant self occlusions.

For each of the three images we extracted Shape Context
features, which were aggregated into a single Capπ descrip-
tor. We used this Cap descriptor to find the 10 nearest match-
ing 3D models in the database, ranked by lowest match dis-
tance. Each matched model was aligned to the sensor data
using the multivariate optimization of back projections de-
scribed above, and the list of matches was reordered by de-
creasing alignment error. We used the Shape Contexts im-
plementation of our planner rather than the SIFT implemen-
tation because preliminary results suggested that given the
specific sensor hardware available for us to use, the match-
ing results obtained using the Shape Context features were
superior to those obtained using the SIFT features.

We gathered all grasps of the 3 best matches, using the
discretely scaled database models closest in size to the scales
found in the alignment phase. These grasps were scored by

http://dx.doi.org/10.1007/s10514-011-9228-1
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Fig. 12 Examples of successful grasps from our experiments on 20 test objects

our cross-testing generalizability function and we consid-
ered them in that order rather than by the raw quality score.
The table in the robot’s workspace that supported the object
was at a known height, so we rejected a priori any grasps
that would position the hand below the table. We also re-
jected any grasps that our inverse kinematics module marked
as unreachable. If the 3 best models did not suggest any fea-
sible grasps, we added the next model to the list until we had
exhausted all ten matches.

In our simulation experiments, our method for resolving
a pre-grasp into a grasp was to move the hand along the ap-
proach vector until it contacted the object, and then close
the fingers. This is not feasible in the real case, since lack-
ing touch sensors on the hand we cannot reliably move un-
til contact. Instead we conservatively move the hand until
it contacts the visual hull of the object and once this con-
tact has been achieved we close the fingers. Due to errors
in positioning it is possible for the fingers to contact the ta-
ble while closing, and so we set the arm in a backdrivable
“gravity compensation” mode while the fingers are closing,
which allows the arm to adjust itself automatically if the fin-
gers push against the table.

We performed 20 grasp trials on different objects, all of
which were novel to the planner. Some of the trials were dif-
ferent orientations of the same object rather than new mod-

els, demonstrating that the planner does not assume a partic-
ular orientation of the objects. We were able to consistently
grasp and lift 80% of the objects, by which we mean re-
peatedly grasping the object in the same approximate pose,
but not necessarily in the same position on the table. Of
the remaining objects, 15% were consistently unsuccessful
and 5% (one object—the mug) worked inconsistently, with
a success rate of 50%. Thus, we rate the grasping success of
our experiment as 82.5% for novel objects.

The breakdown for individual trials can be seen in Table
1. Pictures of some example runs, can be seen in Fig. 12. Of
interest is the fact that all of the failure cases involved pre-
grasps with high volume and ε qualities (measured on the
database model the grasp was associated with). It appears
that that grasp quality alone may not be a good predictor of
how well a grasp will generalize.

In contrast, the cross test score does predict generaliz-
ability well. Of the 10 objects with cross test scores greater
than or equal to 4, 9 were successfully grasped and one (the
mug) was inconsistently grasped. It appears that a low cross
test score does not necessarily imply that the grasp will fail
to transfer, but a high cross test score is a good predictor
of success. This matches our intuition about cross testing; a
high score implies that the grasp will work for broadly simi-
lar models while a low score implies that the grasp involves
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Table 1 Grasp statistics for the
20 test objects. We show Grasp
Wrench Space volume and ε

measures for the grasp as
measured on the database model
it came from, and the cross test
rank (which ranges from 0 to
10)

Object GWS Volume GWS Epsilon Cross Test Success Rate

Airplane 0.248949 0.121306 2 1

Bowl 0.789061 0.104948 5 1

Car 0.114416 0.063945 1 1

Cone 1.26367 0.307398 2 0

Game controller 1.10065 0.225382 4 1

Glove 0.852982 0.198539 5 1

Guitar down 0.075235 0.113709 2 1

Guitar sideways 0.087479 0.04529 2 1

Gun flat 0.135381 0.158566 3 0

Gun propped 0.245537 0.12387 6 1

Gun vertical 0.227672 0.178572 3 0

Horse lying 0.082555 0.061489 4 1

Horse standing 0.080858 0.097742 3 1

Juice 0.227337 0.064467 10 1

Mug down 1.08632 0.190867 1 1

Mug up 3.91504 0.474024 5 0.5

Phone 1.25637 0.272403 4 1

Shoe 0.508364 0.058958 3 1

Spray bottle 0.167752 0.112601 7 1

Stapler 1.50923 0.232955 4 1

something particular about the original model that may not
be present in other models of the same class.

The failure cases were interesting to study. Picking up
a traffic cone failed because although the planner chose a
reasonable grasp (and in fact lifted the cone off the table
slightly) the cone slipped out of the hand due to a lack of
sufficient friction. Picking up the mug in the “down” posi-
tion (laying on its side) caused a torque that broke the grasp
due to the uneven weight distribution of having the bottom
much heavier than the top of the mug. Picking up the mug in
the regular “up” position worked when the robot found the
handle, but failed when it was off by a small amount. These
failure modes suggests areas where our assumptions could
be refined and our method could be improved.

11 Discussion and conclusions

In this work we proposed and demonstrated a novel frame-
work for data-driven grasping based on partial sensor
data. Specifically, we showed how the construction of the
Columbia Grasp Database allowed us to grasp novel ob-
jects by matching into the database using any of several
shape matching methods, and how to choose “generaliz-
able” grasps to propagate to the new object. We also de-
veloped new tools for aligning 3D models to partial data

when the models are only proxies and cannot be expected
to have the local feature correspondences normally used for
model/image alignment. In experiments on a real robotic
platform we successfully grasped a number of objects with
a Barrett hand using grasps selected from the database.

The performance of a data-driven algorithm naturally de-
pends on the quality of its data. While the Eigengrasps plan-
ner is state of the art, the grasps it produces are not al-
ways ideal. Balasubramanian et al. (2010) tested the stabil-
ity of Eigengrasps-planned grasps for the Barrett hand as
compared to human-provided examples when executed by
a real robot. They found that the planned grasps had a suc-
cess rate of 77%, compared to a 91% success rate for the
manually provided grasps, despite the latter having lower
grasp qualities in simulation. This suggests that the Eigen-
grasps planner can be improved upon. However, one ad-
vantage of a data-driven grasping algorithm is that we can
smoothly make use of various sources of data. If we had
multiple sources of grasps we could choose to rank grasps by
their sources as well, prioritizing grasps from more “trusted”
sources. An example of this would be always choosing a
human-provided grasp when one is available even if there
exists a planner-provided grasp with higher numerical qual-
ity. Thus, a human operator could “correct” the database by
providing a small number of grasps for objects that the plan-
ners grasps unnaturally or poorly, without needing to pro-
vide grasps for the entire database.
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A central idea of this paper is that data-driven grasp-
ing can build upon rule based grasping, by using traditional
grasp planners to build an offline knowledge base. An inter-
esting question is whether the loop can be closed, with data-
driven approaches revealing new grasping rules that can be
used in improved heuristic planners. The results of Balasub-
ramanian et al. (2010) suggest that this is indeed the case.
By examining large amounts of examples, they found that
human operators were strongly inclined towards grasps with
approach vectors orthogonal to a principal axis of the object
being grasped. Re-incorporating this newly found rule into
the Eigengrasps planner by considering only planned grasps
for which this rule held resulted in a dramatic improvement
in grasp success when executed on a robotic platform. This
rule seems likely to be a truism of humanlike grasping, and
not limited in application to the Eigengrasps planner. The
data in the CGDB is ripe for such analysis, and we hope that
other grasping rules can be found by examining the data we
have collected.

We have assumed in this paper that grasping an object
depends solely on its geometry (and perhaps the frictional
properties of its surface). In reality, however, the object’s
distribution of mass is equally important. As mentioned in
Sect. 2.1, we assume that all objects to be grasped are made
of hard plastic and have uniformly distributed mass. While
these assumption are reasonable for many everyday objects,
it would be more desirable to estimate the material proper-
ties of the objects to grasp from the sensor data. There is a
good deal of literature on texture classification, or recogniz-
ing materials from images. We refer the reader to this survey
(Landy and Graham 2004) and to the work of Leung and
Malik (2001) which focuses specifically on recognizing real
world materials from small numbers of photographs. Know-
ing the surface materials makes it possible to guess the mass
distribution with slightly greater accuracy, although it is ul-
timately not possible to definitively find the center of mass
of an object without manipulating it.

The experiments we performed took place in a robot-
ics laboratory. Our reliance on silhouettes has some conse-
quences for moving to unstructured environments. We re-
quired a known background in order to perform background
subtraction and find object silhouettes. This is not an in-
surmountable difficulty, as the problem of segmenting fore-
ground objects from backgrounds has been well studied and
several automated procedures exist such as GrabCut (Rother
et al. 2004) and its variants. A more serious issue is the in-
ability of a silhouette-based matcher to handle significant
occlusion of the silhouette. In unpublished experiments we
have been able to extend the Shape Context CapSet descrip-
tor to match partial silhouettes, by limiting the support of the
log-polar Shape Context histograms to nearby pixels. This
work is promising but is not yet ready for use.

Alternatively, it is possible that for many cluttered scenes
there simply won’t be enough information in the depth map

or silhouette features to recognize graspable objects consis-
tently. We could pair our approach with an image recogni-
tion method such as that of Torres et al. (2010) and Romea
and Srinivasa (2010) which can find known objects in the
presence of strong occlusion. Once the object has been iden-
tified our system can propose pre-grasps for it based on other
known images of the same object that are not occluded. The
advantage of using our shape database in tandem with an
image-based object recognition system is that to train the
recognition module on new objects would require only pho-
tographs, not CAD models as is currently required, since
our system could provide grasps using only the training pho-
tos. Combining our framework, which can quickly suggest
grasps for a new object based on unoccluded photos with an
image-recognition grasp planner such as Torres et al. (2010)
which can match and pose-align occluded objects to unoc-
cluded photos, would result in a system that could quickly
learn how to grasp new objects and also execute them in
complex environments.

An additional consideration for moving this work to un-
structured environments is sensitivity to sensor noise. Real
world sensing will inevitably contain some error, and so a
useful grasping algorithm must be able to operate without
fully trusting all of its inputs. This is especially true for depth
images. Traditional intensity cameras capture light intensity
and color—information that is directly measurable at the im-
age sensor. In contrasts, depth cameras attempt to capture a
quantity that is not directly measurable at the sensor and can
only be inferred by proxy values such as stereo disparity or
time of flight. Each of these proxies can be fooled by scenes
containing particular materials or geometric configurations,
resulting in sensor error. Our SIFT based descriptors inherit
some noise insensitivity from SIFT, and as such can handle
depth images with some incorrect depth values. However,
they have more trouble with depth images that have miss-
ing data for some pixels, where the depth could not be esti-
mated at all. Further work is needed to make the SIFT based
CapSets work for those images.

If we leave readers with one new idea, let it be this: shape
matching of sensed data into large 3D databases is a vital
new direction for robotics. The possibilities for data-driven
methods go far beyond robotic grasping, potentially encom-
passing semantics, object identification tasks, and indeed
any task that a robot must perform in an unstructured en-
vironment where not all objects can be known and modeled
in advance. It is increasingly clear that we cannot directly
teach robots everything they need to know about the world.
Shape matching and data-driven methods can open a robot’s
world, giving it access to huge datasets that continue to grow
exponentially. The transformative potential for unsupervised
learning in this space cannot be overstated.
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