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Abstract
In this paper development of  a directionally selective structure in cat striate cortex is used as a paradigm for exploring
issues of biologically plausible and computationally interesting learning algorithms.  A compartmental model of a
“canonical microcircuit” is used to represent functional units of the cortex.  Initially, the thalamus projects in a
random fashion to a pair of cortical microcircuits.  Through the use of a sliding threshold model of LTP and LTD,
these projections develop biologically plausible, directionally selective responses to randomly moving visual stimuli.
Possible implications of the learning algorithm on self-organization in the developing cortex are discussed.
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Introduction

The main goal of this work is to model brain structure
development at the intermediate level of cortical circuits.
Two primary benefits are expected from this approach.  First,
developing realistic models of microcircuit structures in the
brain is hoped to serve as a basis for constructing biologically
plausible more complex models.  Second, models in this
domain may be used as a vehicle by which issues involving
local learning algorithms may be explored, and contrasted
with biology in a principled way.

The model was developed in several stages.  First, a
compartmental microcircuit model of cat striate cortex was
constructed and its behavior was compared with results from
electrical stimulation experiments.  Second, a pair of
microcircuits were wired together and specific thalamic
projections were added, such that the two microcircuits
behaved in a directionally selective manner.  Finally, the
thalamic projections were replaced by random connections,
and a local Hebbian-antiHebbian learning mechanism was
used to develop a directionally selective behavior, similar to
what has been observed in cat.

We see the importance of this work in that, to our
knowledge, no full implementation of structural development
in the cortex has been modeled on this low but functionally
predictive level.

The microcircuit structure of the striate cortex

The behavior of the cell structures in the striate cortex is
typically explained by selectivity of neurons to different
aspects of the incoming information (e.g. orientation, motion
direction, or color of a visual stimulus). Existing models of
how such selectivity is achieved in the striate cortex can be
clustered into three groups. First, it can be the result of
selective neurons existing as early as in the retina e.g.
(Barlow and Levick, 1965), second, it can be obtained by a

specific connectivity pattern in the projection from the lateral
geniculate nucleus (LGN) (Hubel and Wiesel, 1962), or it can
be a phenomena emerging from the given cortical area under
investigation.

In cat, it is known that the input coming from the LGN is
not directionally selective, that is cells prior to the striate
cortex do not respond with different frequency to stimuli
moving to distinct directions (Hubel and Wiesel, 1959).
Therefore models based on retinal directional selectivity e.g.
(Koch et al., 1986; Borg-Graham and Grzywacz, 1992) are
not applicable.  According to the dominant theories, strong
postsynaptic inhibitory processes in cat cortex shunt the
ample non-directional excitation coming from LGN when
movement in the non-preferred direction occurs.  In contrast,
this inhibition does not emerge in case of movement in the
preferred direction (Goodwin et al., 1975; Orban, 1984; Koch
and Poggio, 1985).  However, careful intracellular recordings
have not revealed such strong inhibition in response to non-
preferred stimuli (Douglas et al. 1991).  Moreover, the
strongest inhibitory signal is seen when a preferred stimulus
is projected to the retina (Berman et al., 1991)

Recently a new model of microcircuits in the cat visual
cortex has been proposed which potentially resolves the
puzzle (Douglas and Martin, 1991).  The model of the basic
microcircuit emerged from extended tests of the cat striate
cortex with electrical stimulation.  Figure 1 shows the block
diagram of the proposed circuit.

The three boxes represent three populations of neurons in
the cat striate cortex: (a) the pyramidal cells in the superficial
layers (layer 2, 3), and the spiny stellate cells in layer 4, (b)
the pyramidal cells in the deep layers (layer 5 and 6), and (c)
the smooth cells in all these layers.  The first two groups have
excitatory outputs, the third has inhibitory output of type
GABA-a (fast), and GABA-b (slow) lumped together into one
type of inhibitory connection in Figure 1.  All three
populations receive thalamic input, though the deep layers
receive only weak signals.  All three populations have
connections to all other populations, and every population
also has recurrent connections back to itself.  These
connections have been justified by anatomical data (Douglas
and Martin, 1991).
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The function of the microcircuit is as follows.  The
thalamic excitation represents only a small percent of the total
incoming excitation to each block (10-20% for superficial
spiny and smooth, 1-10% for deep spiny cells).  The majority
of the excitatory input comes from local intracortical
connections, which amplify the thalamic signals.  The
inhibitory control imposed by the fast GABA-a and the slow
GABA-b connections prevents over-excitation in the
superficial and deep spiny pyramidal and stellate populations.
This control takes place at the early phase of cortical
processes initiated by an input, therefore it does not need to
cope with the full-blown excitation.  The excitatory feedback
from the spiny populations to the smooth cells assures
stability of control.  The less the intracortical excitation is, the
less input activates the smooth population, which in turn,
exhibits less inhibition.  As will be seen, this delicate tandem
formed by the inhibitory and excitatory signals explains well
why it is so difficult to detect inhibition with non-preferred
stimuli.

The microcircuit was tested with electrical stimuli by
Douglas and Martin, modeling the presence of GABA-a (n-m
bicuculine) and GABA-b (baclofen) blockers.  The results
were compared with experimental data and found to be
remarkably similar.  As the authors pointed out, this
microcircuit can not only be a tool for reproduction of certain
restricted data, but an embodiment of a general structural
design, i.e. a "canonical circuit" which is potentially capable
of formulating many behaviors of the cortex. It is claimed that
with appropriate modifications, this microcircuit can be used
for reproducing different selectivities.  This structure was
therefore chosen as a framework for this developmental
study.

Physiological evidence for structure and development of
directional selectivity

Directional selectivity has a strong relation with
orientation selectivity. The evidence for this comes from
structural and developmental studies.  From structural point
of view there is only one important aspect to be considered at
the level of our model.  Directional selectivity in area 17 in
cats has columnar organization similar to that of orientation
selectivity (Berman et al. 1987).  Bicuculine (a GABA-a
blocker) was shown to reduce or even to abolish directional
selectivity in the cat's visual cortex (Sillito 1977), therefore
inhibitory interneurons probably play a prominent role in
establishment of directional selectivity in the striate cortex.

In developmental studies of selectivity, several researchers
have shown a deprivation effect on directional selectivity
similar to that on orientation selectivity in cats (e.g. Pasternak
et al. 1985).  As in the case of orientation selectivity, normal
development of directional selectivity depends strongly on
coherent input from the environment (Cremieux et al., 1992).
This suggests that the general rules underlying activity
dependent developmental processes for all kinds of selectivity
are fundamentally similar.  However, since the experiments
depriving one type of selectivity development left other
selectivities largely unaffected by the given selective
deprivation (Cynader and Chernenko, 1976), these
developments of different selectivities seem, at least up to a

Figure 1: The principal structure
of the canonical microcircuit.
The three boxes stand for
three different populations in
the striate cortex. Hollow
triangles represent excitatory,
filled triangles  inhibitory
(GABA-a and GABA-b)
connections (from Douglas &
Martin 1991).

certain degree, to be driven by independent processes.
Therefore, independent modeling of one given selectivity
seems to be an appropriate first step in investigating
developmental processes in the cortex.

Plasticity in the visual cortex

Long lasting enhancement of the efficacy of synaptic
transmission after tetanic stimulation (LTP) is widely
accepted to be one of the most important ingredients of
plasticity in the brain. Increasing experimental support has
been given for the decrease of efficacy of mildly activated
synapses (LTD) in cortex  (Artola et al., 1990).  Though LTP
was studied mainly in the hippocampal formation,
accumulating evidence shows its similarly prominent role in
the cerebral cortex (Tsumoto, 1990).

Modeling synaptic plasticity can be carried out at different
levels of abstraction.  The work of von der Malsburg
(Malsburg, 1988) has demonstrated how a set of cells may
differentiate during development into a set of feature
detectors that cover a feature space.  Specifically, this
technique has been applied towards modeling the formation
of orientation-specific cells in the primary visual cortex of
cat.  Key to this work is the fact that no global control is
induced upon the developing system.  It is only through
distributed and local control that the system attains a global
organization, implementing the philosophy outlined in (von
der Malsburg and Singer, 1988).

One primary drawback of the algorithm suggested by von
der Malsburg is its reliance upon a normalizing term that
requires direct knowledge instantaneously of all incoming
synapses to update a single synapse.  The temporal
competition mechanism for weight update (Cooper et al.,
1979) is one possible alternative to this normalizing term.
According to this scheme, when an incidence between an
incoming signal and the firing of a cell is detected, a weight
update occurs.  As opposed to the standard Hebbian update,
however, the weights may also be decreased in response to an
incidence.  The decision to increase or decrease the weights is
determined by whether or not the cell's activity has reached
above some threshold.  Below the threshold an anti-Hebbian
update (decrease of efficacy) occurs, and above the threshold,
the update is a Hebbian one (increase of efficacy).  This
scheme, while achieving stability by  normalization as the one
implemented by von der Malsburg, it resembles the LTP-LTD
mechanism reported from experiments in the cortex
(Collingridge and Singer, 1990), and it uses inherently local
information to perform the computation.

However, this scheme is not robust enough
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computationally. The response of all patterns can slip under
the LTP-LTD threshold and eventually decrease to zero.
Conversely, in the absence of sufficient lateral inhibition, the
neuron can become selective to more than one type of input
pattern.  A possible remedy was suggested by (Bienenstock et
al., 1982).  According to their scheme, the activity of the cell
is kept in check by allowing the LTD-LTP threshold to
change over time.  In general, this threshold is controlled by
the overall activity of the cell (taken over a long period of
time).  Thus, when a cell is overly active, the threshold will
increase, causing responses to most inputs to fall below the
threshold into the LTD range, resulting in a decrease in these
weights.  Similarly, when the cell's activity is very low, the
threshold will decrease, resulting in a general increase in
weights and activity (see Figure 4).  Bienenstock et al. have
outlined how this style of computation may be utilized to
develop an array of orientation-specific cells.

To date, no explicit physiological evidence supporting this
sliding threshold theory has been found. However, alternative
theories closer to biology e.g. (Lisman and Goldring, 1988;
Lisman, 1989)  offer no distinctly articulated complete
computational schemas.

Model Design

In the simplest microcircuit model the deep and superficial
spiny populations may be lumped together, since from the
viewpoint of directional selectivity, they do not carry out
different tasks.  A circuit containing two columns that are
directionally selective in two different directions is depicted
in Figure 2.

For the case of a rightward moving stimulus, thalamic cell
T1 fires first, activating the spiny unit in microcircuit 1 and
the smooth cell of microcircuit 2.  When T2 fires 20 msec
later, the spiny cell of microcircuit 2 does not activate
because it has already been inhibited by the corresponding
smooth cell, which was activated earlier by T1.

The overall principle of directional selectivity in this
scheme is the same as in all of the previously proposed
structures compelling the general requirement of directional
selectivity (Poggio and Reichardt, 1973; Borg-Graham and
Grzywacz, 1992): it is spatially asymmetric so that two
adjacent units receive the excitatory information from a
moving input with a delay between them, and the circuit has
elements with nonlinear characteristics.

However, there is no need for strong shunting inhibition in
the case of null-directional movement, as in other proposed
models.  Instead, in the case of null-directional movement the
output of the spiny cell is reduced by early excitation of the
corresponding smooth cell, which prevents full-strength spiny
firing.  Also, due to the structure of the scheme, the
directionally selective response will increase with increasing
velocity up to a given point, and then will begin to decrease.
This is exactly what has been found experimentally (Orban et
al., 1981).

On microscopic level, we followed Douglas & Martin's
approach (Douglas and Martin, 1991 ).  Since the
morphological and functional features of the neurons in each
population are similar, instead of working with thousands of
neurons and hundreds of compartments, each population is

Spiny

Smooth

Spiny

Smooth

Thalamus

T1 T2

microcircuit 1 microcircuit 2

Figure 2.  The pre-wired
micro-circuit  pair.
Micro-circuit 1 (left) is
sensitive to a rightward-
m o v i n g  s t i m u l u s ,
whereas micro-circuit 2
is sensitive to a left-ward
m o v i n g  s t i m u l u s .
(Arrowhead - excitatory
synapse ,  c irc le  -
inhibitory synapse).

modeled with a single neuron.  The smooth and spiny neurons
are modeled with an active soma, and two and three
compartments of passive dendritic structure, respectively.

The thalamic inputs to the network are modeled as rapid,
high-current spikes, which about 2 msec in duration.  For
each trial, the two thalamic cells fire in succession, with a
delay of 20 msec.  The order of firing is determined
randomly.

The model is implemented using Genesis (Wilson et al.,
1991), a biophysical-level simulator.

The Learning Model

Figure 3 shows the initial setup of the network.  The
projection from the thalamus to the cortex is complete,
however the strengths of these weights are chosen to be small,
random values.  The goal of the learning algorithm is to
develop a set of thalamo-cortical connections such that one
microcircuit recognizes stimuli moving to the left, and the
other recognizes movement to the right.  This development
occurs in response to successive presentations of moving
stimuli in random order.  One possible solution to this has
already been shown in Figure 2.

Although learning is modeled at a more abstract level than
biophysics, two important aspects from this level are
integrated into the model : (1) learning is performed using
only local information, and (2) learning is a continuous
process in time.

The learning algorithm is based upon the correlation-based
Hebbian formulation (Hebb, 1949), with the addition of a
term referred to as eligibility.   Eligibility is a function of the
local membrane potential and the sliding threshold term
(mthresh).  This function determines the extent and direction
that a synapse strength will change in response to presynaptic
activity.  The eligibility function is shown in Figure 4.

The weight update in the algorithm is:

∆wij = α * eligibility Vm,mthresh( )* ai * a j

where α  is the learning rate, and ai  and a j  are the firing
rates of the presynaptic and postsynaptic neurons,
respectively.  The sliding threshold is updated according to:

τ d mthresh

dt
= −mthresh + a

j

where τ  is the time constant for the memory of activation.
As in the standard Hebbian formulation, when activity of

the presynaptic cell is correlated with activity of the
postsynaptic cell, the weight connecting the two units
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changes.  However if the membrane potential of the
postsynaptic cell does not reach above mthresh, then the
weight is decreased.  Likewise, when the membrane potential
is very high, the weight is increased.

As discussed above, the threshold, mthresh, is allowed to
shift, depending upon the past history of the neuron’s activity.
When the cell receives a large amount of input, this threshold
increases, causing a reduction in the strength of the weights
when the postsynaptic cell is only slightly active.  On the
other hand, when the cell is only slightly active (over a long
period of time), mthresh will decay, allowing any inputs to
induce a positive change in the weights.

Results

Because the initial weights from the thalamus were small,
neither of the microcircuits initially responded very highly to
any movement, as shown in Figure 5.  As learning progresses,
both the microcircuits and the weights leading into individual
spiny cells compete with one another.  The result is a wiring
that supports recognition of each of the two different input
cases.  Figure 6 shows the development of this wiring over 20
seconds of simulated time (400 msec between stimulus
presentations).  For each spiny cell, only a single connection
from the thalamus achieves a significant value.  In addition,
each input unit from the thalamus establishes exactly one
connection to a spiny cell, yielding a connection scheme
similar to the one found in Figure 2.

Figure 7 shows the post-learning microcircuit responses
when a rightward moving stimulus is presented.  In this case,
SPINY_1 has learned to recognize this particular stimulus.
SPINY_2, on the other hand, is significantly inhibited by the
first pulse (thalamic input), that the second pulse cannot
contribute significantly to the cell's activation even though
there is a high positive connection from the thalamus.  It is
also important to note that SMOOTH_1 is highly active.  This
is consistent with experimental observations that high activity
correlate with high amounts of inhibition, and the lowest
inhibition is recorded when the depolarization of the
excitatory cells is the smallest.

Discussion

It was found that the temporal competition between
synapses on a single cell worked well as a mechanism for
normalization for a wide range of parameter values.
Sometimes , however, both of the spiny cells would learn to
recognize the same direction (15% of the time).  This problem
was minimized by adjusting the strength of the cross-
connections between the two microcircuits, to the point that a
slight advantage of one spiny cell would cause the other to be
shunted, indirectly through the smooth cell.  In effect, this
implements a contrast enhancement operation, similar to that
used by (von der Malsburg and Singer, 1988).  This contrast
enhancement is key because during a single learning trial, it
forces the weight updates to be concentrated onto a small
number of weights, rather than affecting all weights in the
network.

We also found a similar problem in the simultaneous
adjustment of the thalamic-to-spiny projections and the
thalamic-to-smooth projections.  Not only is it possible for the
smooth cells to fall into the situation where they both respond

1

0

-1

Vm

Hebbian

Anti-
Hebbian

mthresh

thresh

rest.

pot.

eligibility

Figure 4. Eligibility as a function of the local membrane
potential, a fixed threshold thresh, and a sliding threshold
mthresh.

Spiny

Smooth

Spiny

Smooth

Thalamus

T1 T2

microcircuit 1 microcircuit 2
Figure 3.  The learning

micro-circuit model.
The connections from
the thalamus to the
cortical cells adjust
t h e i r  s t r e n g t h s
t o w a r d s  t h e
deve lopment  o f
directionally-selective
cells.

to stimuli moving in the same direction, they very often chose
to respond inconsistently with their corresponding spiny cells.
The learning parameters were tuned such that the thalamus-
to-spiny projections adjusted quicker than the thalamus-to-
smooth projections.  This strategy helped to reduce the
incidence of inconsistent wiring, because once the thalamus-
to-spiny projections began to commit towards a solution, the
thalamus-to-smooth projections would follow their lead.
More work along these lines is necessary in the future.  It
would be interesting to test experimentally whether any
difference in learning rate between projections to the
excitatory and the inhibitory cells can be detected in the
cortex of cat.

The sliding threshold mechanism appears to satisfy the
goal of normalization through temporal competition.  It is
necessary, however, to ask about the generality of the
algorithm as it is applied to other problems.  The primary
concern at this point is the apparent dependence of the sliding
threshold memory time constant on how often a particular
stimulus is presented to the system.  As additional stimuli are
added to the presentation list, or the frequency of presentation
for an individual stimulus is changed, it may be necessary to
further adjust the parameters of the model.  Further work is
necessary to explore this issue.

In addition to the benefits discussed above for a local
learning algorithm, we posit that the sliding threshold
mechanism might possess further computational ability above
(or at least different than) the standard normalization that is so
often used in neural algorithms.  This mechanism implements
temporal competition, as opposed to spatial competition.  In
other words, the competition limits the overall time that the
cell participates in computations, rather than the total
"possible" contributions of all of the weights.

Suppose that we wish to train a system to recognize
features in the environment and respond with some action.  If
two features happen to map to the same action, the weights
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(A) (B)

Figure 5: Initial responses of the microcircuits to a pattern moving from left to right.  Both lower curves
correspond to the membrane potential of (A) spiny cell of microcircuit 1, and (B) spiny cell of microcircuit
2 (the upper curves are the membrane potential of the corresponding smooth cells).  The activity of neither
the excitatory nor the inhibitory units achieves a high state.  Note also that the hyperpolarization of the
spiny cells (due to smooth cell inhibition) is only 5 mV below the resting potential.

(A) (B)

Figure 6: Change of thalamic-spiny weights over the course of an entire experiment (50 stimulus
presentations).  For spiny cell 1 (A), the effects of competition between the rightward projection (upper
curve) and the leftward projection (lower) begin to be very visible at about 7.5 sec.  (B)  Corresponding
weights for micro-circuit 2.

for one feature compete with the weights of the other feature,
even if the corresponding inputs do not occur at the same
time.  The result in the standard normalization case is that the
cell is restricted to respond to half the degree to each of the
features than it would if it only learned to respond to a single
feature.  With the sliding threshold mechanism, on the other
hand, the cell may be allowed to respond to both features with
the original strength, as long as the features did not
temporally overlap.

Future Directions

We see several important directions that this model may
be taken.  First, the model should be extended from the
simple two microcircuit model to an array or matrix of
connected microcircuits.  Second, more biological aspects of
the model may be developed further, including adaptation of
neural firing (due to calcium), realistic thalamic input, use of
three units within an individual microcircuit, molecular
encoding of learning, and directional reversal between
superficial and deep layers.  Third, an important step in this

modeling work will be in the learning of additional
selectivities, such as orientation, within the same cortical
structure.  Finally, it will be interesting to investigate how the
form of normalization discussed in this work relates to the
more general framework of subtractive and multiplicative
normalization methods put forth by (Miller and MacKay,
1992).

Conclusions

This paper has presented a self-organizing model of
directional selectivity in cat striate cortex.  The neural units
were modeled at a compartmental level, and were used to
construct complex microcircuit building blocks to form the
model of the cortex .  The self-organization was performed by
a correlation-based sliding threshold algorithm.  This
algorithm is inherently local in the computation of weight
updates, lending credence to its biological plausibility, and
making it a candidate algorithm for implementation using
VSLI technology.

More detailed information regarding this work may be
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(A) (B)

Figure 7: Response to a rightward-moving stimulus after a significant amount of learning has taken place.
Spiny cell 1 (A) responds very highly to the stimulus (lower curve).  Note also, that smooth cell 1 also
responds highly, due to the excitation fed from the spiny cell.  Spiny cell 2 (B, lower curve) is already
significantly shunted by the time the second pulse (from TH1) arrives from the thalamus, therefore it does
not respond significantly but becomes strongly hyperpol,arized.

found in (Fagg and Fiser, 1992).
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