
To Appear in New Perspectives in the Control of the Reach to Grasp Movement (K.M.B. Bennett and U. Castiello Eds.)

CHAPTER 13

REINFORCEMENT LEARNING FOR ROBOTIC REACHING AND GRASPING

A. H. Fagg

Center for Neural Engineering, Computer Science Department, University of Southern
California, Los Angeles, California 90089-0781 (ahfagg@mensa.usc.edu)

SUMMARY

A reinforcement learning approach is used to train a neural controller to perform a robotic reaching task. Unlike

supervised learning techniques, where the teacher must provide the correct sequence of motor actions, only an

evaluation of the robot's performance is provided. From this limited information, the robot must discover the

appropriate motor programs that best satisfy the teacher's evaluation criterion. This type of learning approach is

important because in a real-world environment, the teacher is generally not able to describe the motor program

that performs the desired motor skill. This chapter utilizes the language of schema theory [1] as a mechanism for

describing functional decompositions of motor programs. A connection is made from schema descriptions to a

neural-level implementation of the schemas. It is at this low level of processing that we define a reinforcement

learning algorithm that acquires motor programs that satisfy the reinforcement policy defined by the teacher.

INTRODUCTION

In a laboratory situation, a primate learns to perform the task designated by the experimenter

through a reward/penalty or reinforcement-based paradigm. This reinforcement information,

however, is extremely sparse relative to all of the things the monkey must do in order to obtain

a reward. Even with the simplest tasks (e.g. reaching to grasp a handle), a monkey has many

different motor acts that are available, from which he must select some sequence. When a

reinforcement signal is provided, he must somehow infer the critical elements of his actions that

caused him to receive the reward, so that these elements may be repeated the next time that the

same situation arises. Despite this very limited amount of information, the monkey is often able

to learn the desired task.

Within the robotics domain, we find a somewhat similar problem, in that it is typically

difficult to specify a robust motor program. A very common technique is to specify in great

Learning to Reach 2

detail the trajectory through space that the manipulator is to take in performing a task. This has

worked fairly well in structured environments, but as the environment becomes more uncertain,

it becomes more difficult for the programmer to anticipate all possible situations, let alone the

appropriate actions that must be taken. We would therefore prefer to specify programs at a

higher level: one in which it is more natural for a programmer or teacher to communicate. Our

approach draws inspiration from learning in monkey, using reinforcement (or reward-based)

information to specify the desired behavior of the robot, as opposed to specifying the motor

program that produces that behavior (note that supervised learning techniques are one way of

implementing this latter case).

Learning within a reinforcement-based paradigm, however, presents several key

difficulties, which have been explored by a number of authors, including Barto, Bradtke,

Dayan, Sutton, Watkins, Werbos, and Williams [2-6]. These are:

A) The reinforcement signal is only a scalar measure of the performance and does not

provide explicit corrective information.

B) The reinforcement signal is not necessarily continuous in time (i.e., it may only be

available at very discrete events).

C) The reinforcement signal can be temporally delayed relative to the critical actions taken

by the neural controller. Critical actions are actions in the sequence generated by the

controller that determines the final result in the environment (and indirectly determine

the reinforcement).

Some elements of this reinforcement-based approach have also been explored in Fagg and

Arbib [7], which presents a model of the work of Mitz, Godshalk, and Wise [8]. Their work

examined the changes in behavior and in neural responses in the premotor cortex as a monkey

learned an association task. In these experiments, monkeys were first taught to associate a set

of four distinct visual patterns with a particular movement of a joystick. For example, when the

monkey is shown the character A, then he is expected to move the joystick to the right. If the

monkey responds correctly to the stimulus, then he is rewarded with a squirt of juice. Once the

monkey has learned the overall task, sets of novel stimuli are presented. The monkey is to infer

the appropriate motor response to each stimulus based upon the reward information that he is

given.

The key results of the model were :

¥ The model produced a similar pattern of behavior as was observed in the experiments

with the monkey.

¥ The modeled neural units behaved similarly to the premotor cortex cells observed by

Mitz et al.

¥ The model represented the visual-motor transformation in a distributed manner and

Learning to Reach 3

updated this transformation based only upon the reinforcement signal received from

the teacher. By distributed representation, it is meant that a particular transformation

did not depend exclusively upon a single computational unit, but rather on the co-

activation of a set of units.

In this work, these ideas are extended in several dimensions:

¥ Sensing and generating actions now become continuous processes, rather than a one-

step sensor-to-motor transformation.

¥ The teaching signals are no longer in one-to-one correspondence with the actions taken

by the learning system. In general, a whole sequence of actions is taken before

reinforcement information is available. In addition, it is possible that this signal is

delayed relative to the critical actions taken by the system. These problems are

approached by modifying the learning algorithm such that the reinforcement signal is

propagated backwards through time in an efficient and biologically plausible manner.

¥ We begin to approach the issue of different neural regions being involved in a

computation and how their relative functions might work together to perform a task.

It is of special interest to understand how learning may occur at different levels within

a control hierarchy. For example, when a neural system is learning a new task, not

only must it decide what must be learned, but also at what level the new information

needs to be encoded. In some cases, the low-level components of the controller for

the new task are already in place, and it is only necessary for the higher-level to make

adjustments to bind them together in a unique way.

Schema Theory to Neural Networks

Schema theory [1] provides a language for describing functional decompositions of sensory

and motor processes. An individual schema is a parameterizable description of a computational

element that may actually be implemented as a network of sub-schemas. Traditionally, the

lowest-level schemas are implemented as either C processes or as encapsulated neural

networks. A schema instance is a parameterized copy of a schema that performs the specified

computation based upon the schema description and the provided parameters. The theory

allows for the simultaneous existence of multiple schema instances, each with their own set of

parameters.

From a biological stand-point, however, schema theory does not provide a sufficient

language for mapping between schemas and neurons. Although we allow a schema to be

implemented as a neural network and then connect it into a network of other schemas, this is

only done at a functional level. What is missing is a bridge from the functional level of analysis

to an implementational one. At such a level, we would like to explicitly address the issues of:

¥ The distributed representation of schemas across sets of neurons, and potentially over

Learning to Reach 4

multiple layers.

¥ The participation of a single neuron within one or more schemas. These schemas may,

in fact, be functionally distinct from one another, and the task that the neuron

performs for each case may also significantly differ.

¥ Neural representation of information and the operators that act on these representations.

Schemas tend to exchange state information as sets of real-valued numbers and/or

symbols. However, on the neural side, we have (somewhat ill-defined) notions of

firing rates, spatial codes, and cosine tuning functions.

In order to bridge the gap from schema descriptions to the implementation of schemas using
neural hardware, we introduce the concept of a m-schema. A m-schema is a simple processing

unit that is still at a level higher than that of a neuron. A schema is implemented by recruiting a
collection of m-schemas. Even though different schemas can take on radically different

computational structures, all m-schemas utilize a fixed computational structure. Thus, the

different computational structures of two schemas are achieved by recruiting different (but
potentially overlapping) sets of m-schemas.

In the remainder of the chapter, we first present the task to be learned: reaching towards a

specified target from different points in the workspace. A global (schema-level) view of the

neural controller is then presented, followed by a description of the neural implementation of the

model. We then present the learning algorithm that is used to acquire schemas that perform the

desired task. Finally, through a set of simulation results, the behavior of the model is

illustrated.

TASK TO BE LEARNED

In this chapter, we will illustrate the design and behavior of the neural system described in the

next section with a simple reaching task. The learning system controls an X-Y robot (a robot

with two prismatic joints) and is to learn how to reach towards a specified target location. The

inputs to the system are a teacher-provided command signal and goal location, as well as a

feedback signal that informs the system as to the current location of the arm. The neural

controller specifies outputs in the form of incremental changes in position of the arm.

Reinforcement learning techniques have been applied to a similar problem by Barto et al. [9,

10], except in their case the target position was always fixed.

The robot arm is located in a closed workspace. The teacher provides the system with

several different types of reinforcement information, which are summed to create a global

reinforcement signal (this measure is scalar and continuous). First of all, the system is

positively rewarded when the endpoint of the arm reaches the target location. Secondly, if the

endpoint of the arm reaches the edge of the workspace, it is prevented from further movement

and it is given negative reinforcement. Finally, the system also receives a small amount of

Learning to Reach 5

target
location

a
b

c
arm

endpoint

Y

X

Figure 1. Several possible actions given a
particular situation: a) move towards the
target, receiving a significant amount of
positive reinforcement; b) move
perpendicular to the correct direction,
receiving no reinforcement; and c) move
directly away from the target, and
therefore receive negative reinforcement
(of the same magnitude as a).

positive (negative) reinforcement if the movement in

the last time-step was towards (away from) the target

location. One important question to be examined is

the degree to which this third type of reinforcement is

necessary for the system to learn the task within a

reasonable amount of time.

This two degree-of-freedom manipulator provides

a simple example through which to illustrate the neural

architecture, but still presents interesting challenges.

One primary difficulty in learning is that the controller

must output both the correct x-dimension increment

and y-dimension increment in order to move towards

the goal and receive a reasonable amount of positive

reinforcement for doing so (Fig. 1, action a). If the

increment for only one dimension is correct (action b),

but the other is incorrect (e.g. opposite in sign), then the system could receive either negative

reinforcement or none at all. In a case such as this, it is impossible to determine which of the

two control outputs was correct. Therefore, the system must rely upon multiple samples with

different output actions to infer what the correct action is given a particular situation. Note that

in this reinforcement scheme, the feedback resulting from the production of an action that takes

the arm directly away from the target (action c) provides just as much information as does a

movement towards the target.

MODEL DESIGN

The neural model described in this section can be viewed at several levels of abstraction. We

will first look at the overall organization of the model, and then look closer at the details of the

implementation.

Global Network Architecture

The global view of the network design is depicted in Fig. 2. The network consists of two main

processing layers and several input/output layers. The Command Vector is the input into the

network that calls up specific motor programs (high-level schemas). In other words, this

defines the current task that the system is to perform. One such task (the one upon which we

are concentrating in this chapter) is reaching towards a target. Another task might be to reach

towards a specific location (regardless of the target input), or to reach towards a location

opposite the target. For this example, however, it will be assumed that this input is fixed.

The Planning Layer is the neural structure that implements the reach-toward-target schema

Learning to Reach 6

Planning Layer

Execution Layer

Command Vector

X

Y

Target
Location

X

Y

Arm
Location

dX dY

Arm Plant

Figure 2. Overall view of the reach control network.

(which has been selected by the

Command Vector). The Target Location

vectors are a neural representation of the

X-Y position of the target object. The

reach-toward-target schema in the

Planning Layer makes use of this position

information to select the schema within

the Execution Layer that is responsible for

moving the arm to the specified target

location. This reach-toward-a-specific-

target schema utilizes the current state of

the arm (input from the Arm Location

vectors) to generate movement commands

for each of the two degrees of freedom.

These output commands are sent to the

d X and d Y layers, where they are

executed by the manipulator.

It is important to keep in mind that the

global architecture presented in this

section is specific to the particular reaching task. It is our intention that the neural-level

implementation of the layers (described in the following sections) be generic in the sense that

given other control problems, the same implementation would be useful, even if the global

architecture has changed in some way (e.g. the addition of more processing layers).

Input / Output Coding

Each Target Location and Arm Location vector is a linear array of neurons that code a

continuous value using a spatial code. In this case, a Gaussian distribution is used, where the

location of the mean of the distribution is determined by the value being coded. The variance of

the distribution is adjusted such that two values must be relatively close to one another to have

significantly overlapping representations. The coding scheme is such that we are also able to

represent a continuous range of values while utilizing only a finite number of neural units. Fig.

3 shows an example of Gaussian coding for three different values.

The dX and dY layers represent the output of the control network. Each layer consists of a

linear array of units that spatially code one output variable (the increment of robot position along

the X- or Y-dimension). A value is read out from a linear array of units by computing the

center of mass of the activity levels:

Learning to Reach 7

x=2

x=3

x=10

1 2 30 10.. .

Figure 3. Example of Gaussian spatial coding in a
linear array of neurons. Neuron firing rate is
indicated by shading (white = not firing, dark =
maximum firing rate). The values coded by the
three linear arrays are 2, 3, and 10, respectively.

x =

i * ai
i=0

N -1

å

ai
i=0

N -1

å

where:

x is the decoded value.

i is the linear position along the array.

N is the length of the array.
ai is the activity level of the ith unit.

Processing Layer Implementation
The Planning and Execution layers of the global architecture (Fig. 2) consist of collections of m-

schemas. Physically, the m-schemas are arranged into a two-dimensional grid. We first define

the primary computational concepts that make up a m-schema and then show how these

concepts are implemented within neural hardware.
A m-schema produces an output when it detects an incoming sensory feature. However, the

activation (selection) of this mapping is constrained by both global and local inputs. In order
for a m-schema to become active, it must first be primed by some external input. When a

higher-level process primes a m-schema, it effectively grants its permission for the m-schema to

participate in a computation. For example, a high-level grab object process will need to recruit

sub-schemas to execute the reach and grasp elements of the task. This is implemented by
priming the m-schemas that make up the two sub-schemas. In turn, these sub-schemas may be

further broken down into more specific sub-schemas. Also, these two schemas may establish

lines of communication for the purposes of coordinating their execution.
Due to the inherent simplicity of a m-schema, implementing a single schema requires the

activation of an entire set of m-schemas. It is therefore necessary on an implementational level

to provide a mechanism that ensures the co-activation of this set. On the other hand, some m-

schemas conflict with others by producing conflicting commands to a lower level or to an
actuator. The co-activation of these m-schemas is therefore not desirable.

These constraints are implemented through interactions between primed m-schemas within a

single layer. By allowing such an interaction to take place within each layer, the problem of

deciding which processes are appropriate for execution is distributed throughout the network.

As a result, the decision as to which sub-schema is appropriate for a given situation is left to the

layer that has the contextual and sensory information necessary to make such a decision. In this

work, these interactions are implemented as inhibitory and excitatory connections between the
primed m-schemas.

One simple way to implement m-schema interaction is by connecting m-schemas through a

Learning to Reach 8

prime

activity

sensoryoutput

activity

input from
other layers

input from
sensory cells

output to
other layers

interaction
with other
columns in
the layerNoise

inhibit

Figure 4. The structure of the column. Arrowheads
indicate excitatory connections, inhibitory connections
are indicated by small circles. Gray arrowheads
represent modifiable synapses.

M e x i c a n - h a t type operator. This

connection scheme provides excitatory
connections to physically near neighbor m-

schemas, and inhibitory connections to a

ring of neighbors just outside the circle

defined by the excitatory connections.

Computationally, this scheme implements a

contrast-enhancement operation that forces

only a few neurons to be active in a layer at

any one time.

Given this context, it is possible to

more precisely interpret the concepts of

schema and schema instance. A schema

instance is a particular pattern of activity

within a layer. A schema can be considered

as the set of constraints imposed by a

particular class of priming input and the
interaction between the set of m-schemas.

Neural Implementation of the m-schema

The m-schema is implemented using a tightly-coupled collection of neurons. These collections

are referred to in this work as columns of neurons. Fig. 4 depicts the neural implementation of

the column. We first define the behavior of the generic neuron model, and then discuss the

detailed implementation of the column.

Leaky Integrator Model of the Neuron. The neurons in the model are implemented

using the leaky-integrator model [1] as a basis. Each neuron is represented by a membrane

potential and a firing frequency (Fig. 5). The dynamics of the generalized neuron are defined

by the following equations:

t
d mem

dt
= -mem - threshold + inputså

firing = f (mem)

where :
t is the time constant of integration.
mem is the membrane potential of the neuron.
threshold is the neuron's internal threshold.
inputs is the set of external inputs into the neuron.
firing is the firing rate of the neuron.
f () is a function (typically non-linear).

Learning to Reach 9

S inputs ò f()
membrane
potential

firing
rate

t

-

+

threshold
-

Figure 5. The leaky integrator model of the neuron. The
membrane potential of the neuron is affected by the
current set of inputs, the neuron's threshold, and the
current state of the neuron. The firing rate is a non-
linear function of the membrane potential.

The Priming Unit. Inputs from other layers (primarily higher-level layers) prime the

column. The inputs are summed to determine changes in the priming unit's membrane

potential:

tP
d pri

dt
= - pri - threshP + w ji

P * out j
j

å

where:
pri is the membrane potential of the priming unit of column i.
threshp is the threshold parameter for the priming units.

w ji
P is the strength of the connection from column j (another layer) to priming unit i.

out j is the output activity of column j of a preceding layer.

The firing rate of the priming unit is then computed by:

primei = NSLsat pri()
where:

 primei = the firing rate of priming unit i.

NSLsat(x) =

0 x < 0

x 0 £ x £ 1

1 1 < x

ì

í
ï

î
ï

The Activity Unit. The activity of a column is determined by the firing rate of the

activity unit. Excitatory interactions between two columns are implemented as a positive

connection between the corresponding activity units. Inhibitory interactions are implemented

through the use of an inhibitory unit. When one column inhibits the activity of another column,

it excites the inhibitory unit of the target column, which in turn inhibits the activity unit. The

dynamics of these two units are as follows :

tA
d aci

dt
= -aci - threshA + pri - inhibiti + noisei + w ji

A * act j
j¹i
å

t I
d inhi

dt
= -inhi - threshI + w ji

I * act j
j¹i
å

acti = NSLsat aci()
inhibiti = NSLsat inhi()

where:

 w ji
A and w ji

I are connections from

other columns (specifically their

activity and inhibitory units)

within the same layer. In this

Learning to Reach 10

implementation, connections are made only to adjacent columns.

 noisei is a noise signal that is injected into the membrane potential of the activity unit.

This signal changes slowly relative to the time constant of the processing units; the
distribution is uniform over a small range: -a ,a[].

The noise term plays an important role in the behavior of the system. In the early stages of

learning, this noise helps to drive the search process when the controller is unsure of the correct

action to be taken. As a result, the control space is more efficiently explored. When an activity
unit is firing, the column (m-schema) is participating in the current computation.

The Sensory Unit. The sensory unit detects sensory events from the environment or

from the state of the robot. For example, the input into the Execution layer of the network

consists of two arrays of units that specify the current end-point position of the arm. Thus, a

sensory unit at this level can detect events such as the arm moving into:

A) A particular range of the Y dimension.

B) A specific region of the workspace (requires inputs from both the X and Y

dimensions).

C) Multiple regions of the workspace.

A similar type of incidence coding scheme has been used by Mel [11], except that each

sensory unit receives exactly one input from each dimension (e.g. X and Y). This results in

only units of class B, which requires many more units to cover the entire space.

The sensory units in the Planning layer receive input from the Target Object vectors.

The dynamics of the sensory unit are similar to those of the priming unit:

tS
d seni

dt
= -seni - threshS + w ji

S * input j
j¹i
å

sensoryi = NSLsat seni()
where:

input j is an element of the sensory input vector for this particular layer.

The Output Unit. The firing rate of the output unit is the sensory unit firing rate gated by

the activity unit:

 outputi = activityi * sensoryi

The activity level of the output unit represents the output of the column, which then

connects to other layers in the network. The output from one layer provides input to priming

units of the destination layer. Thus, schemas at one level prime sub-schemas implemented at

lower layers of the network.

LEARNING SYSTEM

Given the overall structure of the network, the task of the learning system is to tune the

Learning to Reach 11

connection strengths between the various sets of units to develop a set of m-schemas that

accomplish the task specified indirectly by the reinforcement signal. This tuning must be done

based upon the experience of the system interacting with its environment and the reinforcement

signal that it receives from the teacher. As discussed in the introduction, this problem is

difficult because:

A) The reinforcement signal is a scalar measure of the performance and does not provide

explicit corrective information.

B) The reinforcement signal is not necessarily a continual signal.

C) The reinforcement signal can be delayed temporally relative to the critical actions that

were taken by the neural controller.

 Determining which connections should be updated is referred to as the credit assignment

problem. Given that the teacher provides some instantaneous reinforcement signal, the learning

system must identify which computational elements (columns) were responsible for generating

the actions that ultimately led to the reinforcement (structural credit assignment), and at what

time did these elements make the critical decisions (temporal credit assignment).

In the columnar structure, two sites are subject to updates in connection strength:

connections from the output units of one layer to the priming units of another layer, and the

connections from the sensors to the sensory units (gray arrowheads of Fig. 4). By tuning the

set of connections from the output units of one layer to the priming units of another, the
learning system adjusts the set of m-schemas that are to be primed at the lower level, and thus

determines the set of m-schemas that make up the sub-schemas. At this level, the learning

scheme effectively implements the following rule:
A) If the lower-level m-schema is active (and thus is participating in the computation)

during periods of time when the control system tends to receive positive

reinforcement, then increase the connection strength from the higher-level column

(which is active) to this column.
B) If this m-schema tends to participate during times when the system is receiving

negative reinforcement, then reduce the connection strength.

The connections from the sensors to the sensory units are adjusted in a similar manner.

This adjustment implements the rule:
A) If a m-schema is active and it is producing a non-zero output during a period of time in

which the system tends to receive positive reinforcement, then increase the connection

strength from those sensor inputs that are currently firing.
B) If the system tends to receive negative reinforcement, then it is possible that the m-

schema is attending to the incorrect sensory feature; therefore, reduce the connection

strength to those sensor inputs that are currently firing.

Learning to Reach 12

In both of these loosely-defined learning rules, the terms tends to receive positive

reinforcement and tends to receive negative reinforcement are very important. Even though the

system finds itself in several very similar situations, the control system may produce different

control actions (due to the noise injected into the activity units), or the teacher may provide

apparently inconsistent reinforcement information (due to the inexactness or more qualitative

nature of the reinforcement signal). As a result, the learning system must not make large

adjustments based on the instantaneous reinforcement signal, but rather must take into account

many experiences in constructing an effective control program.

The challenge, then, is to consolidate these experiences in an efficient manner - both in time

and in storage space. The algorithm below presents one approach to solving this problem.

Eligibility as a Temporal Measure of Credit Assignment

The eligibility of a weight (connection between two units) measures the participation of the

connection within the computation that is currently taking place. The instantaneous eligibility is

defined as the coincidence between the pre- and post-synaptic cell activities. In our case, this

product is also modulated by the strength of the connection between the two cells (this

definition of eligibility was inspired by the work of Klopf [12], and Barto, Sutton, and

Anderson [2]). Thus, the instantaneous eligibility is :

Ãeij = ai * a j * wij

where:
Ãeij is the instantaneous eligibility between unit i and unit j.

ai and a j are the activity levels of the pre- and post-synaptic columns, respectively.

wij is the weight from unit i to unit j.

An exponentially-decaying memory of the eligibility can be implemented by applying a low-

pass filter to the time series of instantaneous eligibilities :

te

deij

dt
= -eij + Ãeij

where:
te is the time constant of integration, or the decay of the memory.
eij is the eligibility of the connection.

When a reinforcement signal (R) is provided by a teacher, the eligibility of a connection is

used to update the weight. More specifically:
Dwij t() = a * R t() * eij t()

where
Dwij t() is the change in weight.

a is the learning rate.

This update equation says that if a connection has recently been participating in a

Learning to Reach 13

computation, then make a small incremental change to the connection strength. The sign of this
incremental change is determined by the sign of the instantaneous reinforcement signal, R t() .

The magnitude of this increment is determined by the magnitude of the reinforcement signal,
and by the degree of participation of the connection, eij t().

It is important that the rate of learning, a , is adjusted appropriately. When set at a value

that is too small, the learning time can be longer than practical. If set too large, the noise

component of the weight increments (due to the noise injected into the controller or to noise in

the reinforcement signal) can be amplified above the level of the meaningful information.

Weight Normalization

Once the change in weights is computed, the actual connection strength is updated according to:
wij t +1() = Normalize wij t() + Dwij t()()

Biologically, normalization comes out of the limited resources that a neuron has to establish

connections to other neurons. Computationally, normalization performs two important

functions:

A) Individual weights are bounded within a finite range, thus alleviating some

computational difficulties.

B) Normalization implements a form of competition between the individual weights.

This weight competition can take one of two forms: presynaptic or postsynaptic.
For presynaptic normalization, the function Normalize() maintains the conditions

wij
i

å = 1 and 0 £ wij £ 1 (note that wij is defined as the connection strength from unit i to unit

j). In other words, the total output from the presynaptic unit is a constant value; as the weights

change, it is only the distribution of the output that changes. This type of normalization is used

for the connections from the output unit of one layer to the priming unit of another layer.

Within this context, normalization can be interpreted as an active column (at the presynaptic

side) searching for the appropriate set of lower-level columns to which to distribute its priming

support.

Fig. 6a shows the effect of positive reinforcement on the connections from one column to a

set of columns. Initially, the connections to columns a and b have significant strengths.

However, columns b and c are the ones that are currently active. Thus, when positive

reinforcement is received, the strength of these two connections increases. Due to

normalization, the connection strengths to columns a and d are reduced. One way to interpret

this behavior is that the higher-level column is becoming more sure of the correct set of sub-

columns that it should prime so as to receive positive reinforcement in the future. Thus, it

becomes more committed towards these columns through the increase of the weights.

When negative reinforcement is received, the opposite situation occurs (Fig. 6b). The

Learning to Reach 14

R(t) = 1

a b c d a b c d

R(t) = -1

a b c d a b c d

(A) (B)

Figure 6. Demonstration of the effect of positive (A) and negative (B) reinforcement with presynaptic
normalization. The upper box represents the higher-level column, whose output unit connects to the
priming units of the lower-level systems (lower boxes). Column activity is represented by degree of
shading. Connection strengths are also represented with different shading levels (light = small weight, dark
= large weight).

weights leading to the active columns are decreased slightly. The remaining weights are then

increased as a result of normalization. In this case, the higher-level column is not so sure about

whether it should be priming the currently active columns, and hence the decrease in connection

strength. By reallocating the connection strength removed from these active columns, the

higher-level column gives other columns more of a chance to become active the next time the

same situation occurs, thus driving the search process for more appropriate sub-columns.

When postsynaptic normalization is used, the weights are normalized across the opposite
dimension of what is done in presynaptic normalization. So the function Normalize()
maintains the condition wij

j
å = 1. It is this type of normalization that is used for the projection

from sensor inputs to sensory units. From the sensory unit point of view, the unit is attempting

to select the sensor elements that tend to yield positive reinforcement when used as triggering

signals.

MODEL BEHAVIOR

The network used for the experiments described here consisted of a 7 x 7 grid of columns for

the Planning layer, and a 16 x 16 grid of columns for the Execution layer. The dX and dY

layers each consisted of 3 columns. The inputs layers representing positional information

consisted of arrays of 15 units each. On network creation, the connections and their strengths

are randomly generated, yielding a network that is not committed to any particular set of

schemas.

A learning trial begins by selecting one of two opposite corners as a starting position for the

arm endpoint, with the target located roughly in the center of the workspace. The system is

Learning to Reach 15

Target

A B

C

X

Y

Figure 7. The workspace layout for three
different arm positions.

Figure 8. Pre-learning state of the output units of
the Execution layer when the arm is located at
position A. Each small box represents the state
of one unit, with darker boxes indicating high
firing rate. The high firing rate in the activity
units of the execution layer indicates those
columns that are currently participating in the
motor program for this particular target location.
It is these active units that prime the dX and dY
layers.

then allowed to drive the arm until one of two

events occurs: the arm arrives at the target

position, or the arm reaches the side of the

workspace. At this point, the final

reinforcement is given and the arm position is

again reset to a starting location. By using more

than one starting location, the system is forced

to explore a large region of the state space.

However, using only a small number of starting

locations allows for efficient experimentation

and a more controlled analysis.

When a target position is specified by the

teacher, a small subset of Execution layer

columns becomes active (about 25%). For a

given arm position, the sensory units of some of

these active columns fire in response to the arm

position input. These columns then prime the

dX and dY layers. Because the connections are

randomly generated, the priming of each of the

six columns in the dX and dY layers tends to be

at about the same level as the others. Moving

the arm position to different locations in the

workspace yields very little change in the

priming levels.

Figs. 7-11 demonstrate the responses of the

Execution, dY, and dX layers before learning

has occurred. Fig. 8 shows the response of the

output units in the Execution layer when the arm

is in position A (as defined in Fig. 7), and Fig.

9 shows the response of the dX and dY layers.

The responses to the other two arm positions (B

and C) are depicted in Figs. 10 and 11,

respectively.

Note that Figs. 8 and 10 show only some difference in the output activity of the Execution

layer. This is due to the fact that the two arm positions are very near each other. There are,

however, several output units that change significantly in their activity levels. After learning

Learning to Reach 16

1 1
dX column

activity
level

dY column

Figure 9. Firing rate plotted against linear position for the priming units (solid) and output units (dotted) for the
dX and dY layers (same conditions as in Fig. 8). Each layer has three units. An activity peak centered near
the second unit implies a command of zero magnitude; biased towards the first unit implies movement in
the negative direction. Note the relatively uniform priming input in both cases. However, once this signal
is contrast enhanced (output unit activity), it is possible to see slight bias in one direction. In this case, the
system is commanding a slight positive movement for the X direction, and a slight negative movement in
the Y direction.

Figure 10. Pre-learning state for the output units of
the Execution layer for arm position B. Note
similar activity pattern as that in Fig. 8.

takes place, it is these units that will encode the essential differences in motor output between

these two positions. Those units that are active in both cases will encode the commonalities of

the two motor commands.

The differences between Figs. 8 and 11 are much more significant. This is due to the

physical separation of the two locations, which implies that the arm position input patterns for

the two cases (B and C) do not overlap and therefore do not activate many common sensory

units. This will make it much easier for the system to learn radically different motor outputs for

Figure 11. Pre-learning state for the output units of
the Execution layer for arm position C. Note
significant differences in the activity pattern as
compared with Figs. 8 and 10. These differences
are due to the radically different arm positions.

Learning to Reach 17

these two conditions.

In all three cases, however, the priming signals for the dX and dY layers are all at

approximately the same level (the response to arm position A is depicted in Fig. 9), with only

very small biases in one direction or another. Despite this relative non-commitment on the part

of the Execution layer, the contrast enhancement that occurs between the activity units forces a

choice of movement in one of the directions (this is especially evident in the firing rates of the

output units). As learning proceeds, a particular schema instance will begin to prime very

specific columns in these layers. As a result, the layer will rely less on the contrast

enhancement as a way of selecting a specific output.

The small amount of variation between the dX and dY priming units confirms that the

network is not significantly biased to produce any particular action before learning has

occurred. Therefore, the choice of action to output is primarily driven by the noise that is

injected into the activity units of the dX and dY layers. The result of this random set of actions

is that the endpoint of the arm tends to wander around the workspace through a random

trajectory (e.g. Fig. 12a) .

As learning progresses, the controller begins to bias the noise signal in regions of the

workspace that have been visited several times. This biasing must be done slowly so as to

allow the system to explore several different possibilities before committing to one particular

movement direction. It is at the point of full commitment that the bias provided by the controller

reaches a level above that of the noise.

Examining the behavior of the system relative to a single starting position over many trials,

one can observe the general strategy taken by the system. The system first begins by exploring

a small local area around the starting point before wandering off to another region of the

workspace (Fig. 12a). Over several trials, however, the same local area is explored every time

(Fig. 12b). This common experience allows the system to decide upon the best action for this

region of the workspace (Fig. 12c). In subsequent trials, the system executes this action,

taking the arm to a different location of the workspace (closer to the target), where the controller

is now relatively inexperienced. It then proceeds to repeat this process, overall taking small

steps towards the target location (Fig. 12d). Once the entire path is discovered, repeating it

several times solidifies the set of actions in memory (Figs. 12e,f).

For starting location 12,12, the control system caused the robot to collide with the edge of

the workspace only the first three trials. By the 12th trial it had learned how to perform the task

perfectly. For starting location (2,2), the robot collided with the side of the workspace a total of

7 times, and learned to navigate to the target by the 16th trial.

After learning has completed, the Execution layer is much more committed towards

particular output commands. This is evident in the distribution of the firing rate of the priming

Learning to Reach 18

a b c

d e f

Figure 12. trajectories taken during the learning process. Panels a-f (top left to right, then bottom left to right)
are several trajectories taken by the control system during learning. The starting position for each case is at
coordinate 12,12, with the target located at coordinate 6,6. The circle around the target position is the area
within which the system receives a large positive reinforcement signals. Panels a and b are cases where the
system ran into the side of the workspace, where the trial was ended.

units in the dX and dY layers (Fig. 13). Instead of the roughly uniform distribution of activity

that was seen before learning, the Execution layer now forces the system to execute specific

motor commands.

KEY NETWORK DESIGN ISSUES

Through the design and implementation of this neural network model, we have touched on a

number of important network design and neural computation issues. This section explores a

number of these issues further.

Overlapping State Representations

The representation of state is a key problem that plagues neural learning systems in general.

Some systems, such as the work of Barto, Sutton and others [2, 3] rely on orthogonal or

linearly independent state representations. This leads to two problems:

A) A large number of discrete states must be learned and represented.

B) No sharing of information is done between distinct states that might actually yield

similar control decisions.

Learning to Reach 19

1 1
dX column

activity
level

dY column

Figure 13. Firing rate plotted against linear position of the priming units (solid) and output units (dotted) of the
dX and dY layers, after learning has taken place (arm position A). Note the difference with Fig. 9: the
Execution layer now has a much clearer idea as to which units should be primed. In this case, we see a
significant commitment to move along the positive X direction, and somewhat along the positive Y
direction.

On the other hand, many error propagation techniques, such as backpropagation [13] often

require that all computational units participate in every mapping that is learned (this is especially

true early in the learning of a training set). Because every hidden unit participates in every

mapping, it and the connections that synapse onto it are subject to increments for each

input/output mapping. Typically, the modification to a weight for a single mapping conflicts

with that of another mapping. These types of conflicts increase the amount of time that is

necessary to learn the set of mappings, especially as the number increases.

We would therefore like to find some sort of middle ground where a mapping need not

require its own representation, nor should all mappings be encoded by all computing units.

Some of these issues have been approached by Jacobs, Jordan, and Barto [14]. The network

architecture presented in this chapter is designed to address these issues explicitly. The key

features that accomplish this include:

¥ Sensory Coding. Input variables (from sensors) represent values spatially, using a

Gaussian distribution of activity. Thus, two similar values are represented by

overlapping patterns of activity, but two very different values have representations

that do not overlap.

¥ Schema Coding. Generally, different schemas that share common functions will

utilize overlapping sets of columns. This is important in terms of efficiently

representing the set of schemas, and by the fact that learning in one schema can

provide important information for another.

¥ Contrast enhancement.

Importance of Contrast Enhancement for Learning

 The contrast enhancement operation provided by the Mexican-hat operator possesses three key

computational properties.

¥ The number of active columns within a layer is limited to be some subset of the entire

Learning to Reach 20

layer. This implies that only a subset of the columns are allowed to be involved in the

representation of a schema, leaving other columns for the representation of other

schemas. Consider the case where a large number of columns are allowed to become

active and thus participate in a computation. When a reinforcement signal is received,

all active columns are considered to be responsible, and are therefore updated in an

attempt to improve the system's performance. When learning several different

schemas at the same time, this can result in a high degree of overlap, causing the

learning due to one schema to interfere significantly with another. Because the

contrast enhancement operation reduces this overlap, the interference can be greatly

reduced.

¥ During the learning process, the Mexican-hat operator tends to induce a topological
representation of the schemas that it learns to represent [15, 16]. Because a m-schema

tends to be active in correlation with its close neighbors, they will tend to acquire

similar (but not exactly the same) functions. Thus, a slight shift in activity within a

layer (due to some small change in priming) will tend to produce a small difference in

the function of the active schema.

Importance of Noise

Noise plays a key role in the search mechanism employed by the system as it attempts to

identify the correct outputs given a particular situation. Before learning has occurred, the noise

injected into the activity units (of the dX and dY layers) drives the outputs of the system,

forcing the exploration of the local workspace. As learning proceeds, the noise is biased by the

outputs of the Execution layer, until the bias overcomes the noise altogether. This form of

stochastic search and biasing of noise is reminiscent of the SRV (stochastic real-valued) units of

Gullapalli et al. [17, 18].

Noise is also injected into the activity units of the Execution layer. This noise affects the set

of columns in the execution layer that participate in a control computation. This random

switching on and off of columns allows the controller to experiment with different subsets of

columns. Through learning, those columns that tend to participate at times when positive

reinforcement is received will begin to participate more often. This is done until a set of

columns is selected that is most able to learn the control problem at hand.

Modularity of Structure

The column and layer structures have been designed with some degree of modularity. The

difference in function between two layers should not be determined by a difference in layer

implementation, but by the type of information that flows into and out of a layer. The network

described in this chapter utilizes the same structure for the Planning and Execution layers.

Learning to Reach 21

However, the inputs and outputs of these two layers differ significantly.

Using this same modular structure, it is possible to build up more interesting network

architectures, such as one that controls a combined arm/hand system. This type of network

may be grown from the one presented in this chapter by adding additional processing layers for

control of the hand, and adding cross-connections between the hand and arm layers.

FUTURE DIRECTIONS

One dimension of future exploration will be the implementation of such a reaching and grasping

network, which will ultimately interface to a Puma 560 Arm and a Belgrade/USC Hand for

experiments in reaching and grasping within a real environment. We are interested in the

development of real-time, on-line control and learning systems that can be used to teach robots

to perform interesting tasks within a short period of time. One approach to this problem of

learning efficiency is the use of teaching by example, where the teacher demonstrates a motor

program to the robot (Lin [19]). The robot first learns to mimic the teacher, and then through

reinforcement-based feedback (either provided by the teacher or generated internally), refines

the motor programs to increase their success and generality.

In our primate modeling research, we see this work as providing one possible way of

understanding why certain brain regions take on particular functions in sensing and motor

control, and why different regions are connected together in specific ways. One question that

can be asked is that given a set of constraints from a particular network architecture (set of

regions and connections) and a set of behavioral requirements (as specified by the environment

or experimenter), what functions do specific regions and even neurons take on through the

learning process?

The work in modeling of primate behavior and neural systems, and the work in learning in

robots has progressed in parallel. The primate domain provides important hints as to how a

learning system is able to efficiently acquire the ability to perform new tasks, both from a

behavioral and a functional point of view. Robotics provides an environment in which models

from the primate side may be tested, analyzed, and improved in agents that must also behave in

a real environment. Ultimately, predictions that arise from these models may be brought back

to the primate domain in the form of new experiments to be tried or as a better understanding as

to how the primate system functions.

ACKNOWLEDGEMENTS

The author would like Professors Michael Arbib, George Bekey, and Ken Goldberg for their

help and support in the development of this work. Many thanks are also due to Peter Dominey,

Amanda Bischoff, Mike McHenry, Nicolas Schweighofer and David Lotspeich for their many

helpful comments on earlier drafts of this chapter.

Learning to Reach 22

The simulation of this network was implemented in NSL (Neural Simulation Language)

[20], which is available by anonymous ftp (from yorick.usc.edu). Contact Alfredo Weitzenfeld

(alfredo@rana.usc.edu) for more information.

REFERENCES
[1] Arbib, M. A., The Metaphorical Brain 2: Neural Networks and Beyond. (1989) New York: Wiley-

Interscience.
[2] Barto, A. G., Sutton, R. S., and Anderson, C. W., Neuronlike Adaptive Elements That Can Solve

Difficult Learning Control Problems. IEEE Transactions on Systems, Man, and Cybernetics,
(1983) SMC-5:834-46.

[3] Barto, A. G. and Bradtke, S. H., Real-Time Learning and Control using Asynchronous Dynamic
Programming. (1991) TR 91-57, Department of Computer Science, University of Massachusetts,
Amherst.

[4] Sutton, R. S., First Results with Dyna, An Integrated Architecture for Learning, Planning and
Reacting, in Neural Networks for Control, W. T. Miller, R. S. Sutton, and P. J. Werbos, Editors.
(1990) MIT Press: Cambridge, Massachusetts. pp. 179 - 95.

[5] Watkins, C. J. C. H. and Dayan, P., Q-Learning. Machine Learning, (1992) 8(3-4):279-92.
[6] Werbos, P. J., A Menu of Designs for Reinforcement Learning Over Time, in Neural Networks for

Control, W. T. Miller, R. S. Sutton, and P. J. Werbos, Editors. (1990) MIT Press: Cambridge,
Massachusetts. pp. 67 - 96.

[7] Fagg, A. H. and Arbib, M. A., A Model of Primate Visual-Motor Conditional Learning. Journal of
Adaptive Behavior, (1992) 1(1):3-37.

[8] Mitz, A. R., Godshalk, M., and Wise, S. P., Learning-dependent Neuronal Activity in the Premotor
Cortex. Journal of Neuroscience, (1991) 11(6):1855-72.

[9] Barto, A. G., Anderson, C. W., and Sutton, R. S., Synthesis of Nonlinear Control Surfaces by a
Layered Associative Search Network. Biological Cybernetics, (1982) 43:175-85.

[10] Barto, A. G. and Sutton, R. S., Landmark Learning: An Illustration of Associative Search. Biological
Cybernetics, (1981) 42:1-8.

[11] Mel, B. W., Connectionist Robot Motion Planning: A Neurally-Inspired Approach to Visually-Guided
Reaching. Perspectives in Artificial Intelligence, B. Chandrasekaran, Editor. Vol. 7. (1990)
Boston: Academic Press, Inc.

[12] Klopf, A. H., The Hedonistic Neuron. (1982) Washington, D. C.: Hemisphere.
[13] Rumelhart, D. E., Hinton, G. E., and Williams, R. J., Learning Internal Representations by Error

Propagation, in Parallel Distributed Processing: Explorations in the Microstructure of Cognition,
D. Rumelhart and J. McClelland, Editors. (1986) MIT Press: pp. 318-62.

[14] Jacobs, R. A., Jordan, M. I., and Barto, A., Task Decomposition through Competition in a Modular
Connectionist Architecture: The What and Where Vision Tasks. Cognitive Science, (1991)
15(2):219-50.

[15] von der Malsburg, C. How are nervous structures organized? in the Proceedings of the International
Symposium on Synergetics. (1983) Springer. pp. 238-49

[16] von der Malsburg, C., Ordered Retinotectal Projections and Brain Organization, in Self-Organizing
Systems - The Emergence of Order, F. E. Yates, A. Garfinkel, D. O. Walter, and G. Yates,
Editors. (1987) Plenum Press: New York. pp. 265-78.

[17] Gullapalli, V., Grupen, R. A., and Barto, A. G. Learning Reactive Admittance Control. in the
Proceedings of the IEEE International Conference on Robotics and Automation. (1992) Nice,
France: pp. 1475-80

[18] Gullapalli, V., A Stochastic Reinforcement Learning Algorithm for Learning Real-Valued Functions.
Neural Networks, (1990) 3(6):671-92.

[19] Lin, L. J., Self-Improving Reactive Agents Based on Reinforcement Learning, Planning, and
Teaching. Machine Learning, (1992) 8(3-4):293-321.

[20] Weitzenfeld, A., NSL - Neural Simulation Language Version 2.1. (1991) TR 91-05, Center for Neural
Engineering, University of Southern California, Los Angeles, CA.

