Houk, Fagg, Barto: Fractional Power Damping Model of Joint Motion

Fractional Power Damping Model of Joint Motion

James C. Houk! Andrew H. Fagg?
Andrew G. Barto?

houk@casbah.acns.nwu.edu
1Department of Physiology
Northwestern University School of Medicine
Chicago, IL 60611-3008

{fagg, barto}Q@cs.umass.edu
2Department of Computer Science
University of Massachusetts
Ambherst, MA 01003-4610

November 9, 2000

Abstract

The control of arm movement involves an intricate interplay between descending
commands, musculoskeletal mechanics and spinal reflexes. Computational studies fo-
cusing on brain mechanisms for generating movement commands would profit from the
availability of a neuromuscular model that captures key complexities of the biological
system while preserving an abstract framework to facilitate simulation. One important
component of the model is the fractional power damping (FPD) that is produced by
the stretch reflex. In this chapter, we describe a model that unites FPD and other
prominent reflex features with a Hill-based lumped parameter model of the elbow mus-
culature. In this FPD model, antagonist muscle bursts that function to decelerate
the ongoing movement are generated by the stretch reflex, with central commands
preserving some influence over the precise timing and magnitude of this response. Al-
though descending control is achieved by setting equilibrium points of the viscoelastic
muscle-reflex system, the nonlinear damping behavior of opposing reflexes interacts to
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produce a region of stiction around the specified equilibrium. This slows movement so
dramatically that the equilibrium point is effectively never reached in most movements.
The complexities of these nonlinearities do not necessarily increase the difficulty of the
central control problem. Effective control can be achieved by precisely timing the offset
of the agonist burst, and the tendency for oscillations around the endpoint is greatly
diminished by the stiction that results from fractional power damping.

1 Introduction

No one doubts that the spinal cord plays an important role in movement control. How-
ever, when it comes to deciding how motor functions are divided between the brain, the
spinal cord and the musculoskeletal system, one elicits a wide range of opinion. This range
of opinion is partly due to the variety of movements that may be considered. For example,
basic aspects of locomotion and scratching are built into the spinal circuitry and require the
least guidance from supraspinal networks. Voluntary reaching, grasping and manipulation
of objects, in contrast, require extensive guidance from the brain, but probably utilize some
of the spinal mechanisms that evolved earlier to control locomotion and scratching (Geor-
gopoulos and Grillner, 1989). Postural control is an example of an intermediate behavior,
relying heavily both on intrinsic spinal mechanisms and on descending control (Peterson
et al., 1992).

This chapter deals specifically with voluntary arm movements. Implications of realistic
arm, muscle, and spinal reflex properties for the control of double-joint arms have been
investigated by many researchers (e.g., Feldman et al., 1990; Gribble et al., 1998; Jordan
et al., 1994; Karniel and Inbar, 1997; Lukashin et al., 1996; Flanagan et al., 1993; Massone
and Myers, 1996; van Dijk, 1978; Katayama and Kawato, 1993; van Sonderen and Denier
van der Gon, 1990). A wide variety of arm-muscle-reflex models are used in these studies
since there is no consensus as to what constitutes an adequate model or an appropriate
level of abstraction (Winters and Stark, 1987). While these movements depend heavily on
descending control signals, some of their important properties are attributable to spinal
reflexes and to musculoskeletal mechanics (Houk and Rymer, 1981).

Our goal is to propose a mathematical model that captures the key complexities of
the biological system while preserving a framework that is sufficiently abstract to facilitate
computational studies of the overall control problem (see figure 1). One item of complexity
that has been neglected in most past studies is the striking dependence of the stretch reflex
on a low fractional power of velocity (Houk, 1981; Gielen and Houk, 1984). This nonlinearity
produces a friction-like property in the stretch reflex that probably has a marked influence
on voluntary movement control (Barto et al., 1999). The model also incorporates a Hill-
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Figure 1: Model Architecture Overview. X is the descending muscle motor command, A
is the tonic stretch reflex threshold, A is the motorneuron activation, F' is muscle force, 6
and 6 are joint position and velocity, and [ and [ are muscle length and stretch velocity,
respectively.

based lumped parameter characterization of the muscle mechanics (Winters, 1990) and many
features of the equilibrium-point theory of movement and arm geometry (Hogan et al., 1987;
Bizzi et al., 1992; Feldman et al., 1990; Mussa-Ivaldi, 1992; Gribble et al., 1998).

The model architecture is outlined in figure 1. The arm model is composed of two joints (a
simplified shoulder and an elbow), and moves in the horizontal plane. The arm is actuated by
a set of six muscles; a simple model of muscular geometry produces variations as a function
of skeletal configuration in the muscle’s ability to produce torques about the joints. The
current muscle length and stretch velocity provide significant influence (through the spinal
reflex circuitry) on the muscle’s ability to produce forces. A simple pulse-step generator is
responsible for the production of the descending motor commands. This feed-forward control
mechanism serves to illustrate the behavior and capabilities of the spinal-musculo-skeletal
system, but it is not intended as a complete theory of voluntary motor control. In particular,
we examine the stiction property of opposing muscles and focus on their participatory role
in the production of braking antagonist pulses.

2 Musculo-Skeletal Geometry

Our skeletal model represents a human arm operating in a horizontal plane with two
degrees of freedom: rotation of the shoulder and elbow (see figure 2). We use the standard
equations of motion (e.g., Hollerbach and Flash, 1982) with the following parameters after
Gribble et al. (1998): mass of upper and lower arm: 2.1 kg and 1.65 kg; length of upper
and lower arm: 34 c¢m, 46 ¢cm; moment of inertial about center of mass of upper and lower
arm: .023 kg—m?, .011 kg—m?2. Unlike some other models, the lower arm includes the hand,
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Figure 2: A schematic view of an idealized arm model with six muscles. 6, = 0° (elbow
orientation of 0°) is defined as full extension; 6, = 0° is defined as the upper arm aligned
with the sagittal plane of the body. The biceps and triceps long head produce moments
about both the shoulder and elbow. The extensors are assumed to wrap around spherical
joint capsules throughout the range of motion (resulting in constant moment arms). For
the flexors, the muscles are assumed to leave the joint capsule at a critical flexion threshold,
beyond which the muscles are modeled as following a straight path from origin to insertion.
The origins and insertions depicted are not to scale.

although the wrist is assumed to be locked, which is appropriate for our studies of arm
motion.

We lump the set of muscles acting on the arm into three pairs of equivalent muscles
(e.g., Winters and Stark, 1988). One pair consists of a flexor and an extensor representing
all the synergistic one-joint muscles for the shoulder, the actions of which are assumed to
be dominated by the pectoralis and deltoid, respectively. A second pair of one-joint muscles
model those acting on the elbow, which are assumed to correspond roughly to the brachialis
and the triceps lateral head. The third pair represents flexor and extensor bi-articulate
muscles spanning both joints, corresponding to the actions of the biceps and the triceps long
head, respectively. The muscle moment arms for the extensors are set to 3.5 ¢cm (shoulder
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Figure 3: A simple muscle path model: wrapped path (A) and a straight path (B). Muscle
path follows the dark curves. The critical parameters/variables are: 6 (joint orientation,
8. = 0° = full elbow extension), LA, and LA, (distance from the center of joint rotation to
muscle origin and insertion, respectively), r (the radius of the joint capsule), R (the muscle
moment arm). This model has critical implications for both the muscle length (C) and the
muscle moment arm (D) as the skeletal configuration changes.

extensor), 2.5 c¢m (elbow), 4 cm (biarticulate shoulder), and 2 c¢m (biarticulate elbow).
The flexor moment arms are assumed to vary between 0 and 5 ¢m, depending upon the
configuration of the arm.

Winters and Stark (1988) suggested a simple model of muscle path in which one assumes
that for extended joint positions, the muscle wraps around a spherical joint capsule, resulting
in a constant moment arm (figure 3A). However, when the joint flexes beyond a critical
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Figure 4: Two cases of the biarticulate muscle path model: A) no contact with the joint
capsules, and B) contact with both joint capsules. Biarticulate moment arm as a function
of joint angle for the shoulder (C) and elbow (B). 8, and 6, correspond to the joint angles
for the shoulder and elbow, respectively; Li, LA;, and LA, represent the distance from
shoulder to elbow joint, the distance from muscle origin to center of shoulder rotation, and
the distance from muscle insertion to the center of elbow rotation; r, and r, are the joint
capsule radii; and R, and R, are the moment arms for the shoulder and elbow. For the case
illustrated in panel B, R, = r; and R, = 7.

threshold, we assume that the muscle leaves the joint capsule and follows a straight path
from origin to insertion (figure 3B). The result is a muscle moment arm that can be larger
than the joint capsule, as is demonstrated in figure 3D. Note that for extreme flexion (where
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LA, # LA;) the moment arm can also drop to a level below that of the joint capsule radius.
The work of Amis et al. (1979) and An et al. (1981) indicates that this form of path model
captures the primary variation of muscle moment arms as a function of joint orientation
for a number of elbow muscles, including the brachialis. Less is known about the geometry
of muscles involving the shoulder, and we assume for simplicity that this path model also
applies in this case.

Little is also known about the geometry of the muscles that actuate two joints. We
assume a generalization of the above model. In this case, the relationship between muscle
path and joint configuration is more complicated as the muscle may wrap around either one,
both, or neither of the joint capsules. The two extreme cases are shown in figure 4. The
muscle moment arms as a function of joint configuration are demonstrated in figure 4C,D.
Further details of derivation of the geometric muscle model, as well as the assumptions about
the critical parameters (including joint capsule radii, and muscle origin/insertion locations)
may be found in Fagg (2000).

3 The Tonic Stretch Reflex

As in the A model of Feldman and colleagues (Feldman, 1966; Feldman et al., 1990), the
neural control signal in our model determines the threshold muscle length, A, for initiation of
the tonic stretch reflex. Static force (zero stretch velocity), F, is generated as a function of
the difference between a muscle’s current length, [, and the current value of its A, as plotted
in figure 5A. Specifically:

b=t
F=K[-N"(1-e <), (1)
where
. |z ifz>0;
2 _{0 if 2 < 0. 2)

The exponential term captures the initial recruitment of the motor units in a fashion that
is related to the size principle (Houk et al., 1970; Binder et al., 1996). This term influences
the force-length relationship most strongly at lengths just above the stretch reflex threshold
A. The parameter ¢ determines the spatial extent of this influence. A short derivation is
given in the Appendix, and the values used for the individual muscles are shown in table 1.
As [l — A]T increases, force due to the tonic stretch reflex approaches a linear function of
length, with slope K (figure 5A). This parameter represents the stiffness of the tonic stretch
reflex.
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Figure 5: (A) Force as a function of muscle length for the simulated brachialis. It is as-
sumed that the muscle is not stretching (i.e. [ = 0). a) A = 31.16 em; b) A\ = 32.85 cm;
c) A = 34.46 cm. The four marked points (two stars and two boxes) correspond to the same
configuration and motor command as those indicated in figure 6A. (B) Force as a function

of muscle stretch velocity (I) for the simulated brachialis. | < 0 corresponds to shortening of
the muscle. A = 33.6 cm. d) | = 36.28 cm; e) | = 35.49 cm; f) | = 34.68 cm.

The normalized stiffness of a muscle is defined as the stiffness of the stretch reflex nor-
malized by the operating range of the muscle or joint. Houk and Rymer (1981) observed
that across different muscles, normalized stiffness (K,,) tends to take on a constant value
of about unity. This provides a convenient method by which reflex stiffness values may be
computed from estimates of the operating range of muscle length and muscle force:

force range
K =Kn length range’ 3)
where length range is the change in muscle length from full extension to full flexion. We
assume for our purposes that K, = 1. Minimum force is assumed to be 0, thus force range
is taken to be maz force, which is often assumed to be linearly related to the muscle’s
Physiological Cross-Sectional Area (PCSA) (An et al., 1981). The derivation of this lat-
ter transformation is given in the Appendix. The muscle parameters and resulting reflex
stiffnesses are shown in table 1.

The force-length behavior for a muscle is illustrated in figure 5A (muscle stretch velocity
is 0). Changes in the descending motor command, A, result in a shift of the force-length
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Muscle PCSA (cm?) moment arm | length | K H |c
(cm) range | (N/m) (%) 5 (em)
(cm)

pectoralis | 6.8 3.5—(3.5)—5 15.29 9022 | 0.61 | 1.56
Freivalds (1985)

deltoid 11.01 3.5 13.74 16251 | 1.10 | 1.41
Freivalds (1985)

brachialis | 7.0 14— (25)—4 8.91 15942 | 1.08 | 0.91
An et al. (1981)

triceps 6.0 2.5 7.85 15498 | 1.05 | 0.80

lateral An et al. (1981)

head

biceps 16 0—(35)—5(s) |22.86 |4083 |028 |2.34
(short head + long | 0.75 — (2.5) — 4 (e)
head)
An et al. (1981)

triceps 6.7 4 (s) 23.56 | 5769 | 0.39 |241

long head | An et al. (1981) 2.5 (e)

flexor carpi | 2 2 4.71 8610 0.59 |-

radialis An et al. (1981)

Table 1: Muscle parameters. Notation for variable moment arms: “minimum — (constant) —
maximum”, where constant refers to the constant moment arm size in the wrapping region.
The parameters of the flexor carpi radialis are used in the appendix to derive a number of
other model parameters.

curve along the length axis (to the left for decreasing values of A; to the right for increasing
values), as in the A model (Feldman, 1966). The combined effect of all muscles acting on a
single joint is derived by appropriately summing the corresponding force-length curves (e.g.,
Partridge, 1979), weighted by the muscle moment arm:

Tj = Z Rj,m (0) Fm (9, )\)’ (4)

meM;
where 7; is the torque exerted at joint j, M; is the set of muscles which actuate joint j,
R;m(0) is the moment arm of muscle m about joint j, F,, is the force produced by the
tonic stretch reflex for muscle m, and @ is the 2-element vector composed of the shoulder
and elbow flexion angles. Note that we utilize the convention that R, (6) is positive if
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the muscle generates joint flexion, and negative if it produces joint extension. We assume
that the descending motor command affects both of the reflex thresholds ()‘agonist and
)‘antagonist) by simultaneously increasing one as the other is decreased (or vice-versa). We
also include a descending co-contraction signal (described in section 6), which is implemented
as a simultaneous decrease in the two reflex thresholds. When )‘agonist and A ntaconist are
selected in such a way that both muscles are tonically active, equation 4 defines a force field
with a unique equilibrium position (Hogan et al., 1987; Bizzi et al., 1992).

The combined effect of the four equivalent muscles acting on the elbow joint is shown in
figure 6A. The curves illustrated in the figure demonstrate the position-dependent, isometric
torque response of the set of muscles under three different constant motor commands. The
motor commands were selected under the same conditions as those produced by subjects of
the Astryan and Feldman (1965) experiment (the results of which are shown in panel B). A
specified level of torque is established against a load at a specified elbow position (each indi-
cated by one of the three circles in panel A). This is accomplished with the model by setting
the elbow to the desired position, and then shifting A’s together until the desired torque is
achieved. Redundant degrees of freedom are resolved by constraining the equilibrium posi-
tion of each agonist/antagonist pair (brachialis/triceps lateral head, and biceps/triceps long
head) to be the same joint position and by enforcing a small amount of overlap in the tonic
reflex region for each pair (i.e., each pair is slightly co-contracted).

The curve emanating from each of the circles is produced by holding the motor commands
constant as the elbow is allowed to flex. The resulting muscle-produced torque is thus equal
in magnitude, but opposite in direction to the opposing isometric load at that joint location.
In other words, if the opposing load were suddenly reduced from its initial level (at the
circles) to some lower magnitude, the curves indicate the position to which the elbow would
equilibrate (assuming no changes in the descending motor commands). The precise shape of
the iso-motor command curves is determined by a combination of force-generation ability of
the tonic stretch reflex, and the position-dependent variation in muscle moment arm. The
difference in slope in curves b and c results from the increase in moment arm due to a lifting
of the muscle off of the joint capsule. The contribution of the nonlinearity of the stretch
reflex versus the moment arm variation becomes clearer by comparing the corresponding
points in figures 5A and 6A (the points are marked with stars or boxes in the two figures).
Furthermore, figure 6C shows the elbow torque response over a wider range of the variables.
The change in slope of the iso-motor command curves is a direct result of the variation in
muscle moment arms for the elbow flexors. The constant slope of these curves in the 7 < 0
region is due to our assumption of constant moment arms for extensors. This assumption
roughly approximates the experimental observations of Amis et al. (1979) regarding the
elbow joint and is consistent with the assumptions made by the models of Astryan and
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Figure 6: (A) Torque as a function of elbow
position (6.) for three levels of constant mo-
tor command. Elbow position is in the coor-
dinate system of our model, with 8, = 0 cor-
responding to full elbow extension. (B) Ob-
served torque as a function of elbow position
(reprinted from Astryan and Feldman, 1965).
Note that ¢ = 180 — .. (C) Torque as a
function of elbow position (f.). Data taken
under the same conditions as in panel A, ex-
cept that a wider region of state space and
descending motor commands are shown. The
dashed box indicates the same region of space
as in panel A.
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Feldman (1965) and Gribble et al. (1998).

4 Fractional Power Damping

Our model of muscle and spinal reflex properties also includes significant velocity-dependent
components. As in the A model and the muscle-reflex model of Wu et al. (1990), the force-
velocity-length relation includes the effects of reflex-induced EMG activity, which particularly
influences the relation for positive velocities (lengthening). For negative velocities (short-
ening) we ignore stretch reflex velocity dependence, where it has considerably less effect on
force generation (Gielen and Houk, 1984). Instead, the variation of force production with
shortening velocity is assumed to be dominated by muscle mechanical properties. In con-
trast, the velocity dependence of lengthening responses is modeled as the combined result of
muscle mechanics and the stretch reflex (Houk, 1981; Gielen and Houk, 1984). We also adopt
the well-supported approach of multiplicatively combining length- and velocity-dependent
muscle mechanical characteristics (Winters, 1990; Wu et al., 1990).

Combining the approach of Gribble et al. (1998) and Wu et al. (1990), we define muscle
activation at time ¢ to be:

A=[l—-X+Hr]". (5)

The terms [ — A and Hr, respectively, represent the static and dynamic components of reflex
produced activation, where H is a gain coefficient for the dynamic component. The values
used for specific equivalent muscles are given in table 1. The reflex related damping term,
r, is defined as follows:

5@ =A+w]" itV < (fast lengthening);
r= [VW% (I=X+ M)r if 0 <1 <V (slow lengthening); (6)
0 otherwise (shortening),

where V' = 1.25 em/sec is a stretch velocity threshold separating the “fast” and “slow”
lengthening regions, and u > 0 represents the receptor’s baseline positional sensitivity (de-
scribed below).

The rationale for this definition of the dependence of muscle activation on stretch ve-
locity follows Wu et al. (1990). In ramp stretch experiments with the human wrist, Gielen
and Houk (1987) estimated power law relationships for EMG activity and force response to
have exponents of approximately 1/3 and 1/5, respectively. Modeling studies (Houk, 1981;
Gielen and Houk, 1984) suggest that the smaller exponent for force results from the com-
bination of muscle mechanical properties and reflex-produced neural input during muscle
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lengthening. For mathematical convenience in the FPD model, we use the 1/5 exponent
to define the velocity-dependent muscle activation during lengthening. However, the slope
of [1/5 approaches infinity as [ approaches 0, which results in numerical instabilities in the
model. This difficulty is solved by introducing a short, linearly-varying region in the range
0 < i < V (corresponding to the “slow lengthening” component of equation 6). Following
the results of Houk et al. (1970), which indicate a small contribution of tendon organ feed-
back to motorneuron activity, a tendon organ contribution to muscle activity is not explicitly
included in the model (c.f., Houk and Rymer, 1981).

Setting the parameter p in equation 6 to be greater than zero allows reflex activity when
the muscle length is below the threshold A of the tonic stretch reflex, provided that the
muscle is lengthening. It therefore has an effect similar to that of parameter p of Gribble
et al. (1998), and z,0 of Wu et al. (1990). We choose x = 0.028 m, which falls within the
upper range estimated by Wu et al. (1990).

In the dynamic case, equation 1 is expanded to include velocity-dependent muscle acti-
vation and muscle mechanical effects. Specifically,

F=KA (1-e*) m(i), (7)
where
m(i) = { [(b +al)/(b— l)]+ if [ < 0 (shortening); (8)
1 otherwise (lengthening),

and where a and b are the Hill equation parameters (Hill, 1938). K and c are the reflex
stiffness and reflex threshold transition parameters, respectively (as defined for equation 1).
Although m(l) = 1 appears to imply that there is no drop in force production with a positive
stretch velocity, these effects are actually accounted for by the choice of 1/5 fractional power
of equation 6.

For muscle shortening, equation 8 captures the Hill equation in which the maximum
shortening velocity, vmaz, is —b/a. The FPD model incorporates the simplest assumption
that v, remains constant over muscle length and activation level. Winters (1990) discusses
implications of this assumption, which we consider to be minor for our purposes. Also for
simplicity, we assume that a and b are the same for all the model’s muscles, although these
parameters would vary as a function of muscle fiber length in a more detailed model. We
set a = .25 following Winters (1990). The value for b is determined by averaging the values
for vy, given by Winters and Stark (1985) in radians per second. Assuming a constant
moment arm of 2.0 cm yields vy, = —.5 m/s, or b = .125.

We assume that the non-linear damping gain, H, is proportional to a muscle’s stiffness,
K. Gielen and Houk (1984) reported a force relationship to velocity for stretching of the
wrist flexor muscles described by the following equation:



Houk, Fagg, Barto: Fractional Power Damping Model of Joint Motion 14

F—FO = 01’01/5(.’13—1'01),

where F' is the force produced against the manipulandum, Fj is force prior to stretch, v is
the velocity of manipulandum movement, x is the current manipulandum position, and xg;
represents the combined effects of A and p in equation 6. In the FPD model, K H corresponds
to Ci, for which Gielen and Houk (1984) estimated a value of approximately 9552 (££¢)1/5_ In
this experiment, length (m) was measured in the coordinate system of the manipulandum,
which had a moment arm of approximately 4 times that of the wrist-actuating muscles.
Thus, for our purposes:

N 1/5
Cy = 955 x 4 x 45 = 5040.5 (ﬁ) .
m\m
If we assume a stiffness of K = 12069 N/m for the muscles involved in wrist flexion (a
quantity that is derived in the Appendix), then Hj., , the lumped gain parameter for the
wrist flexion muscles!, is defined as follows:

Cy
Hie = - (9)
N /sec\/5 1m
— 50405 — (¢ _m
5005m(m) 8610 N
1/5
— 059 (ﬂ) ,
m

where the damping gain parameter for any particular muscle (H;) is related to the muscle’s
stiffness relative to the flexor carpi radialis:

The resulting parameters which were used in the model are given in table 1.

As described above, experimental results suggest that EMG activation varies as a 1/3
fractional power of stretch velocity (Houk, 1981; Gielen and Houk, 1984). When relating
model behavior to EMG data, we utilize a modification of equation 5, in which the 1/5 frac-
tional power (of equation 6) is replaced with 1/3 power. Note, however, that this formation

'We assume an equivalent muscle corresponding to the flexor carpi radialis.



Houk, Fagg, Barto: Fractional Power Damping Model of Joint Motion 15

omits the initial burst-phase of spindle responses to stretch (Hasan and Houk, 1975; Houk
et al., 1992). Specifically:

. 41+ )
[Z—A+H[l1/3(l—)\+u)] ] iV <

EMG = (10)

. 1+ .
[l—A—i—H[Vl/%(l—)\—l—u)] ] itf0<i<V;
(1= A" otherwise.

The velocity dependent effects of the Hill equation for muscle shortening and the Gielen-
Houk stretch reflex non-linearity are illustrated in figure 5B. The three curves represent
different constant muscle lengths. As shortening velocity approaches V.. (—0.5 m/s), force
generation ability drops to 0 IV in all cases. With muscle stretch, there is an initial rapid
increase in the response force. The slope of this response drops as stretch velocity increases.

The combined effect of static and dynamic components is illustrated in figure 7. In this
case, A = 0.323 m; changes in A shift the surface along the length axis. An important feature
of this surface is that for any fixed stretch velocity, force (F of equation 7) approaches a
linear function of [ whose slope increases with increasing /. This results from the [ — )\ term
that appears in both the definition of muscle activation, A (equation 5), and the definition of
spindle activation, r (equation 6). Note that although the reflex threshold is set to 0.323 m,
during stretch, activation onset occurs much earlier (about 0.315 m in figure 7). This effect
is due to the additive combination of the position- and velocity-sensitive muscle spindles in
equation 5.

5 FPD Interaction of Multiple Muscles

A critical feature of the force-length-velocity curve of figure 7 is the sudden increase
in response force as the system transitions from zero stretch velocity to a small degree of
stretching. At the initiation of a muscle stretch, this immediate response is due to the
large short-range mechanical elasticity of the muscle, which is then followed by a delayed
reflex response (Houk, 1981; Houk et al., 1981). However, the characterization captured by
equations 5 and 6 lumps the two components together, allowing a simpler mathematical
specification.

When the reflex thresholds for an agonist/antagonist muscle pair are set such that both
muscles are simultaneously active, then the result is a region of stiction that surrounds the
equilibrium position in the force field produced by the muscle pair. This stiction region
is characterized by a rapid change in the torque response with either a positive or negative
deviation from zero stretch velocity. This is demonstrated in figure 8, which shows the torque
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Figure 7: Force as a function of muscle length (I) and velocity (1) for both shortening and
lengthening with A = 0.323 m. Positive velocity corresponds to muscle stretching.

response as a function of elbow position and velocity assuming a constant set of descending
motor commands. The reflex thresholds are set such that the joint equilibrium position is
90°, which corresponds to the center of the ellipse. The region corresponding to low joint
position values and negative joint velocities is the stretch region for the flexors acting on the
elbow, which produce a large positive torque. The dark, thick, “S-shaped” curve indicates
where torque 7 = 0. The hashed line is where # = 0 (the tonic torque reflex response).
Joint positions near the equilibrium are such that small negative joint velocities (joint
extension/stretch of the elbow flexors) result in a large, opposing response torque (ellipse
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Figure 8: Elbow torque as a function of configuration of the elbow (#) and its velocity (6).
The action of four muscles contribute to the total torque. # = 0 corresponds to full extension
of the elbow. The shoulder is held at a fixed position. The dark, thick, “S-shaped” curve

indicates where torque 7 = 0; the ellipse indicates the stiction region. The equilibrium
position of the joint is located in the middle of the stiction region (90°).
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region of figure 8). Positive joint velocities also result in a large opposing response torque.
When the joint state approaches the equilibrium (within about +/ — 20° from the target
at 90°), this combination of opposing forces has the effect of very quickly driving the joint
velocity to a very small level. When this happens, although the joint continues to move very
slowly toward the equilibrium, behaviorally, the joint effectively stops moving (or “sticks”) at
the point at which it entered the stiction region. Once within this region, the joint requires a
significant perturbation or shift in equilibrium position in order to be dislodged. The result
is a system that does not exhibit significant ringing near the equilibrium (Barto et al., 1999).

Far away from the equilibrium position, this stiction property does not hold. Although
there is a significant response torque for deviations from 0 velocity in one direction, an
opposite response does not exist for deviations in the other direction. In fact, the response
torque does not change sign, as it does within the stiction region.

Figure 9 shows the phase plane dynamics corresponding to the torque surface shown in
figure 8. Each arrow indicates the direction and magnitude of the evolution of the system
given the state corresponding to the tail of the arrow. The bold curve is the velocity nullcline
(f = 0). Note that this set of points differs from that of figure 8 in which 7 = 0; the
velocity nullcline includes forces in addition to those produced by the muscles (including
inertial, coriolis, and externally-induced forces). The upper right and lower left quadrants
of figure 9 correspond to the regions of state space in which the flexor and extensor muscles
(respectively) respond to stretch by producing large forces. As seen in the figure, these forces
result in a rapid reduction in velocity.

In the model, one class of motor commands (described below) causes the equilibrium
positions of muscle pairs to shift together. This has the effect of shifting the entire surface
of figure 8 along the joint position dimension. Co-contraction of muscle pairs has the effect
of bringing the two stretch reflex regions closer together along the position dimension, thus
increasing their overlap. This results in an increase in the width of the stiction region.

6 Responses to Voluntary Commands

Arm movements are controlled in the model by producing time-varying motor commands
(Am’s) that descend to the spinal cord. One of the simplest representations of such a time
varying behavior is the pulse-step motor command. This form of motor command descrip-
tion is well established in the saccadic eye movement literature (Robinson, 1975), and has
been suggested as a reasonable approximation for the control of voluntary limb movements
(Ghez, 1979; Ghez and Martin, 1982). The pulse-step waveform describes the time course of
the reflex thresholds for an opposing pair of muscles. Hence, we can think of the waveform
as specifying the equilibrium position of the joint, with the pulse playing the role of move-
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Figure 9: Phase plane dynamics for the elbow joint. The arrows indicate the direction and
magnitude of the evolution of the elbow state (6 and 0) The bold, S-shaped curve represents
the velocity nullcline (§ = 0). The muscle motor commands are such that the equilibrium
point is at 90°, which falls in the center of the ellipse indicating the stiction region. Three
paths (emanating from the initial position at 36°) show the evolution of elbow state for
three different movement trials, in which different motor commands are utilized (these are
described in section 6). Path A corresponds to the case in which the equilibrium position
is shifted to the target without first executing a pulse. In this case, the elbow effectively
falls short of the target. Path B is one in which the pulse magnitude and duration are such
that the elbow stops at the target. Path C is one in which the pulse magnitude is too large,

resulting in an overshoot of the target.

ment initiation, and the step indicating where the movement should stop. However, unlike
other equilibrium point theories, simply setting the step to the target joint location in the
FPD model does not guarantee that the joint will arrive there in a reasonable amount of
time (Barto et al., 1999). Instead, due to the stiction property around the equilibrium, the
joint may effectively stop at a point that is not the equilibrium. As a result, it is necessary
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to specify the properties of the pulse (height and duration) such that the joint sticks at the
desired target.

In addition to specifying the timecourse of the equilibrium position, it is also possible to
superimpose a co-contraction signal which causes an overlap in the tonic muscle response of
the opposing muscle pair. For simplicity, here we will assume that a constant non-zero level
of co-contraction is specified prior to and during the entire movement.

For the case of a single opposing pair of muscles, the individual reflex thresholds (5\ Flewor
and thensor) are expressed as follows:

Lm(GI) ift <O0;
Am(t) = CC+<S Ly(0r)+ D, P if0<=t<S; (11)
L (67) if S <=t,

where CC is the co-contraction level used throughout this example; L,,(6) is the commanded
length of muscle m at the corresponding elbow joint angle, €; 6;, and 61 are the equilibrium
positions for the initial and target positions, D,, is the direction of muscle pull (41 for flexor,
and —1 for extensor); P is the pulse magnitude; and S is the time of transition from pulse
to step.

The muscle pulse-step waveforms (),,’s) are made less abrupt by temporally filtering them
through a cascade of two low-pass filters, each with a time constant of 40 ms (Engelbrecht,
1999). Miller and Sinkjaer (1998) suggest that such a form of temporal filtering may be
the result of the time required to recruit a large set of cortical motorneurons and their
associated interneurons. The result is a set of motor signals (\.,’s) representing the spinal
reflex thresholds of equations 5-10. Note that this form of motor program does not allow for
the on-line adjustment of the descending motor signals. Instead, the parameters are selected
a priori, and the motor commands are executed in a completely open-loop manner. Thus,
our use of a pulse-step waveform should not be viewed as a complete theory of limb motor
control. Instead, this mechanism should be seen as a technique for “exercising” the plant
model, which incorporates skeletal, muscular, and spinal mechanisms.

For the results that follow, the experimental paradigm is one in which the shoulder is held
in a fixed position (f; = 90°), and the model is asked to generate point-to-point movements
of the elbow. Because both mono- and bi-articulate muscles are involved in production of
elbow movement, we are faced with an additional level of redundancy. For simplicity, CC,
P, and S are chosen to be the same for both pairs of muscles acting on the elbow.

Figure 10 demonstrates the behavior that results from the execution of three different
pulse-step waveforms. Each of the three movements start with the elbow at 36°. The target
is set to 90°. We selected CC = 0.015 for all three pulse-step waveforms, which yields a
movement duration of about 300 ms for the accurate reach (panel B). For each of the three
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cases, five sub-panels are shown. The first two sub-panels (top) demonstrate the timecourse
of the elbow joint angle and angular velocity, respectively. The third sub-panel shows the
stretch reflex threshold (\,,) for the mono-articulate flexor (agonist). The fourth sub-panel
illustrates the timecourse of the EMG signals for the mono-articulate flexor (positive devi-
ation) and extensor (negative deviation). EMG magnitude for the corresponding muscle is
read as the height of the shaded region. The final sub-panel indicates the muscle-induced
torques that result from the descending motor commands.

Figure 10A shows the case in which no pulse is executed (S = 0). The result is a
movement which undershoots the target by more than 12°. Once the elbow movement slows
down to a low velocity at about 600 ms, it enters the elbow stiction region. Once there,
it maintains a very slow creep toward the equilibrium position. Even after an additional
400 ms, the elbow is still about 5° from the target. Thus, for all intents and purposes
(certainly on a behavioral time scale), the movement has effectively stopped at 600 ms. The
corresponding phase plane behavior is shown in figure 9 (path A). The path obtains a low
magnitude peak velocity, and enters the stiction region on the right-hand side of the target
position.

The descending motor command (middle sub-panel of figure 10A) shows a decrease in
the stretch reflex threshold for the mono-articulate flexor. There is a simultaneous increase
in the threshold for the extensor that is not shown. The result is a shift in the equilibrium
position from the initial position to the target. The gradual transition from the initial
position (A, = 33.6 cm) to the target (A, = 31.1 cm) is due to the temporal filtering in
the pulse-step waveform (see figure 1). The reduction in the flexor threshold results in a
reflex-induced increase in the EMG activity of the flexor. The opposite effect is seen in the
extensor EMG. The combined effect is a net positive torque produced by the muscles, which
initiates an elbow flexion movement.

The transition to the braking phase of movement is the result of two distinct components
(from equation 5): 1) the movement of the elbow increases the length of the extensor,
increasing the tonic response of the stretch reflex, and 2) this response is further facilitated
by the dynamic response of the stretch reflex. Thus, prior to reaching the target, the torques
induced by the extensor overcome those of the flexor, resulting in a net negative (or slowing)
torque. After the movement settles to a low velocity, the residual EMG activity in both the
flexor and extensor is primarily the result of the descending co-contraction signal.

When a pulse is introduced with appropriate parameters (S = 50 ms and P = 0.065),
the elbow completes its motion exactly at the target (figure 10B, and path B of figure 9).
The direct effects of the pulse are seen in the trace of the muscle motor command (middle
sub-panel). Compared to the case in which no pulse is executed, these thresholds temporarily
achieve a higher deviation from the target step level. This difference leads to an even higher
level of EMG activity for the flexor, which results in a higher acceleration of the elbow, and
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Figure 10: Behavioral patterns which result from executing three different pulse-step wave-
forms: A) Execution of a step only (the equilibrium point is shifted directly from initial to
target positions; B) Execution of a pulse-step which brings the elbow directly to the tar-
get position; and C) Execution of a pulse-step which results in an overshoot of the target.
The vertical sub-panels show the timecourses of the following: elbow position, elbow ve-
locity, muscle motor command for the mono-articulate flexor, simulated EMG activity for
the brachialis (dark region) and triceps lateral head (light region), and the muscle-produced
torque. Magnitude of EMG activity is indicated by the height of the shaded regions. The
activity of the brachialis (the flexor) is shown as a deviation in the upward direction; the ac-
tivity of the triceps lateral head (extensor) is shown as a deviation in the downward direction.
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hence an increase in peak velocity. Because the elbow obtains a higher velocity than the
step-only case, the extensor stretch velocity is higher, leading to an increase in the dynamic
response of the antagonist stretch reflex. This results in a larger braking response of the
extensor muscles.

In the case in which the pulse magnitude is set even higher (P = 0.2), the elbow over-
shoots the target (figure 10C). As seen in the phase portrait (figure 9, path C), the path
completely passes the stiction region. As a result, the elbow begins to move in the opposite
direction. However, this re-acceleration is limited: the resulting stretch of the flexor induces
a second agonist burst, which again slows the elbow, causing it to fall into the stiction region
(this time, the left-hand side of the target position). Note that in the phase plane, the sec-
ond velocity peak corresponds (by definition) to the path’s crossing of the velocity nullcline
( = 0). The reason that the first velocity peak does not occur at the pictured nullcline is
that at the time of the peak, the descending motor signals do not correspond to the target,
but instead to the target “plus pulse” (with temporal smoothing). Thus, at the time of
the first velocity peak, the nullcline is actually shifted to the left of where it is depicted in
figure 9.

The torque profile for the overshoot case shown in figure 10C (the fifth sub-panel) contains
two sharp changes in slope at about 300 ms and 430 ms. These points correspond to the
onset and offset of the antagonist muscle burst. It is important to note that although
the descending motor signals (the A,,’s) specify the time of transition to the step, and the
step level itself, the precise onset time and magnitude of the antagonist braking pulse is
determined by the current state of the arm (6 and 6). Even when the descending command
remains the same on a different movement trial, if the phase plane evolution of the arm shows
any differences (e.g., due to external loading), then this will be reflected as a difference in
the antagonist burst pattern.

7 Discussion

This chapter focuses on the development of a neuromuscular model that captures a
tradeoff between the key complexities of the biological system and the preservation of an
abstract framework that facilitates efficient simulation of the model. In particular, it is
important to take into account certain properties of the muscle mechanics and the spinal
reflex circuitry. To that end, our model represents a synthesis of equilibrium point approaches
(e.g., Feldman, 1966; Bizzi et al., 1982; Feldman et al., 1990; Gribble et al., 1998), theories
of velocity-dependent force generation of muscle (Winters and Stark, 1988; Winters, 1990),
and theories of stretch reflex-induced non-linear damping (Gielen and Houk, 1987; Wu et al.,
1990).
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In equilibrium point theories of motor control, when two opposing muscles are activated
to a sufficient degree, the spring-like dynamics of the muscle pair creates a potential well that
contains a unique joint equilibrium position (Feldman, 1966; Bizzi et al., 1982; Hogan, 1984).
In these models, the establishment of the potential well results in a movement of the joint,
which ultimately comes to rest at the equilibrium point. By altering the relative activation of
the opposing muscles, it is possible to alter the location of the equilibrium. Thus, a movement
from one point to another can be achieved by shifting the joint equilibrium position from
the initial point to the target location (Gribble et al., 1998; Mussa-Ivaldi, 1997).

Muscle stretch studies in the cat soleus muscle (Nichols and Houk, 1976) and the human
wrist (Gielen and Houk, 1984) suggest that the stretch reflex plays a critical role during
lengthening in not only the maintenance of muscle stiffness (implicitly assumed in the equi-
librium point models), but also in the production of a damping force that is nonlinearly
related to the velocity of stretch (Houk, 1981). These ideas have been further elaborated in
the models of Hasan (1983), Gielen and Houk (1987) and Wu et al. (1990), and have also
proven to be useful in artificial control problems (Wu et al., 1997; Chang et al., 1999).

Ghez and Martin (1982) have shown that both the antagonist and second agonist muscle
bursts during reaching movements in cat are suppressed when the limb is prevented from
moving. These results imply a significant role of the stretch reflex in the production of these
latter bursts. The head movement study of Hannaford and Stark (1985) indicates that the
triphasic muscle burst pattern occurs primarily during rapid head movements (those which
are nearly time-optimal). Subsequent modeling work shows that reflex action can be used to
derive the timing and magnitude of the braking (antagonist) and clamping (second agonist)
muscle bursts (Ramos and Stark, 1987; Ramos et al., 1989). Similar to our model, they
observe that an occurrence of the second agonist burst is contingent upon an overshoot by
the joint of the final resting position. Although both models include a Hill-type nonlinearity
for muscle shortening, the Hannaford and Stark (1985) model utilizes a linear response of the
stretch receptor to velocity. Furthermore, the Hannaford and Stark (1985) model assumes
that the stretch reflex is not involved in shaping muscle activation during the initial muscle
burst. In contrast, our formulation of the interaction between descending command and
reflex activation is more straightforward in that both components are assumed to contribute
to muscle activation at all times.

Lin and Rymer (1998) recently examined the contribution of damping by the stretch reflex
in a preparation composed of a single muscle and a simulated inertial load. They observed
that inclusion of the stretch reflex led to lightly damped oscillations of the simulated mass,
and not the stiction-like behavior that is observed in our model. However, it is important to
note that the stiction property requires the co-activation of a pair of opposing muscles, and
only holds near the equilibrium position (section 5). Without the second muscle, energy is
removed only during one half-cycle of the oscillation (the stretch of the remaining muscle).
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Thus, multiple cycles will be required before the system comes to rest, which is consistent
with the Lin and Rymer (1998) experimental results.

Our theory has much in common with equilibrium point theories of motor control since an
equilibrium point is specified, but the effective movement endpoint depends on the equilib-
rium point in a complex way that involves the dynamics of the arm (with spinal contribution)
in a neighborhood around the equilibrium point (Wu et al., 1990; Barto et al., 1999). A con-
sequence of FPD-induced stiction behavior is that the central motor system may not simply
rely upon a shifting of the equilibrium position from the initial to the target position. Ghez
(1979) and Ghez and Martin (1982) suggest that neural commands that control limb move-
ments in cat appear to be comprised of a high-magnitude (pulse) component, followed by
a smaller step component Gielen and Houk (1986). Although analogous to the pulse-step
commands that control rapid eye movements (Keller and Robinson, 1971; Robinson, 1975),
our model relies on the stretch reflex to brake the ongoing movement, rather than relying
on the intrinsic viscous behavior of the arm. Furthermore, in our model, the pulse has the
function of moving the joint out of the stiction region, allowing the joint to achieve a non-
trivial velocity before it arrives to the new stiction region specified by the step command
corresponding to the target.

Our model is similar to that of Karniel and Inbar (1997), in that it relies upon the
natural dynamics of the arm and muscles in order to achieve realistic kinematic trajectories
while specifying the control in terms of a feedforward pulse-step motor command waveform.
Such a representation constitutes a simple description of the time-varying motor command
as compared with, for example, a continuous representation of torque output as a function
of time (e.g., Katayama and Kawato, 1993). However, in the model of Karniel and Inbar
(1997), the parameters are separately specified for the agonist and antagonist muscle bursts.
In contrast, Lestienne (1979) suggests that these bursts are not separately planned, but
instead are planned as a unit. Because our model relies on the stretch reflex for the on-
line production of the braking antagonist muscle burst, we are in fact providing an explicit
mechanism for pairing agonist and antagonist bursts. When the limb is externally loaded
(e.g., with viscous, inertial, or elastic loads used in the experiments of Gottlieb, 1996), it will
follow a different path through phase space. Because the reflex formulation is sensitive to
a complex combination of muscle length and stretch velocity, this will affect the magnitude
and timing of reflex-mediated antagonist response, even if the descending control parameters
relating to the braking phase (co-contraction and step in our pulse-step formulation) are
identical across the different loading conditions. Hence, the pairing process is not one that
is fixed, and can be sensitive to external factors.

Karniel and Inbar (1999) have since explored the use of a simplified model of fractional
power damping of the stretch reflex in braking of the ongoing movement. They show that this
gives rise to the experimentally observed relationship between movement duration, movement
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amplitude, and peak velocity (Hanneton et al., 1997). Although our model (as well as that
of Karniel and Inbar) utilizes a pulse-step formulation of the motor command, it is not our
intention to posit this formulation as a complete theory of arm movement control. Instead,
we wish to demonstrate on a qualitative level that the kinematics of reach can be roughly
accounted for by assuming a combination of realistic motor plant dynamics, reflex circuitry,
and a simple motor command. Our results call into question theories that make extensive
use of highly-detailed motor plans that must be computed prior to reach initiation. In a more
complete theory, we imagine allowing a constrained increase in complexity from the pulse-
step waveform, as well as on-line adjustment of the motor signals as a function of delayed
sensory feedback and motor efference copy. The work of Mussa-Ivaldi (1997) provides one
hint as to how to approach the former. In his work, more complex motor signals are achieved
by specifying individual pulse-step parameters over a basis set of Gaussian force-fields, which
roughly corresponding to the activation of combinations of muscles. The latter issue we have
addressed in the context of a simplified controlled system (Barto et al., 1999). We plan to
return to these issues with the more realistic arm/muscle/spinal system presented here.
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9 Appendix

9.1 Muscle Stiffness

We assume that muscle force range in equation 3 is proportional to physiological cross-
sectional area (PCSA). We use the PCSA values summarized in (Yamaguchi et al., 1990);
the original references are given in table 1. Combining this with equation 3, and assuming
that the normalized stiffness (K,) is equal to 1:

Q PSCA,

I

K,, (12)

Y
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where () is a constant that describes the transformation from physiological cross-sectional
area to maximum force, and [; is the length range of muscle m over all feasible skeletal
configurations. The [], for each muscle is derived from our model of muscle geometry and
given in table 1.

Astryan and Feldman (1965) estimate the joint stiffness of the elbow in a task in which a
steady posture was first established against a force at a given joint position (corresponding
to aél), a((f) and oz(({g’) in figure 6B). The force was then suddenly reduced, resulting in a
further flexion of the elbow. If we assume that the subjects did not explicitly react to the
change in force (as they were instructed), then the joint position at which the elbow came to
rest after the force reduction (af(,,*) to to 0&35) can be interpreted as the point at which the
external force is exactly balanced by the tonic stretch reflex for the motor command that
was originally established before reduction of the external force. Thus, the vertically running
curves in figure 6B (M((;%) can be interpreted as the tonic position-torque response of the
muscles as a function of three different motor command magnitudes.

In computing an estimate of tonic stretch reflex gain, we assume that ozéz) to agz) repre-
sents the linear stiffness region for the elbow flexors. A change in load resisted by the elbow
of —.42 kg—m, or —4.12N —m, results in a change in elbow position by 8.5°. We assume
that the biceps and brachialis are the two muscle groups primarily involved in resisting the
external torque. In our model of muscle geometry, these two muscles reduce their muscle
length over this range by 4.5 mm and 4.9 mm, respectively. We also assume that the moment

arms are not changing within this region; we therefore arrive at the following relation:

ATe = AF'bracRe,brac + AF'bicepRe,bicep- (13)

Furthermore, if we assume that the moment arms for both muscles are approximately the
same (this is a reasonable assumption given our model of muscle geometry: R prqe = 3.24 cm
and R picep = 3.47 cm), then:

Re,brac + Re,bicep
2

NS ( >(AFbMC+AFMC€p). (14)

Incorporating the linear assumption of stiffness, and equation 12:

ATe ~ (Re,brac —; Re,bicep> (Albrac Kbrac + Albicep Kbicep); (15)
Re rac Re ice, PCSA rac PCSA ice
= ( L —; L p) (QAlbraclTib +QAlbicepr7bp> . (16)
brac bicep
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Finally, solving for ), we arrive at the following:

2AT, 1

= ) 17
Q Re,brac + Re,bicep AlbraCfCSAbrac + AlbicepPCS Apicep ( )

T
lbicep

brac

In comparing the tonic response of the stretch reflex following either the lengthening or
shortening of an active muscle, Gielen and Houk (1984) observed a lower stiffness following a
lengthening event. Since we are primarily interested here in the lengthening case, we choose
the following estimate of ) to compensate for the shortening condition used by Astryan and
Feldman (1965):

2AT, 1

Q = 0.75 : (18)
Reprac + Repicep | SlracPCSAmac Al”“e”lfcmb’“”
bicep

— 202.87. (19)

brac

The resulting muscle reflex values are summarized in table 1.

9.2 Extent of muscle exponential region

The extent of the exponential region of each muscle is determined by parameter c in
equation 1. We assume that each muscle’s ¢, is linearly related to the length range of the
muscle. Specifically:

cm = CU. (20)

We assume that the exponential region of the muscle length-force relationship in (Feld-

man, 1966) is from al? (88°) to af? (111.5°) (See figure 6B). By this, we mean that the
exponential term of equation 1 saturates over this range. Thus:

em ~ (1—eHAl,, (21)

where Afm is the change of muscle length over the exponential region. For the elbow flexors,
Afbmc = 2.52 ¢cm and Afbicep = 2.62 cm.

Utilizing the average length change and length range of the brachialis and biceps, we
estimate C' as follows:
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AlAbrac + AlAbicep .

C =~ (1—6_1) (22)

r r ’

brac + lbicep
= 10.23. (23)

Thus, cprac =0.91 cm and cpicep =2.34 cm. The remaining parameters are given in table 1.

9.3 Stiffness of flexor carpi radialis

An et al. (1981) report the PCSA of flexor carpi radialis as 2.0 cm?. Given equation 12,
we arrive at Ky, = 8610 N/m.
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