
Amstutz & Fagg; Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’02) 1

Real Time Visualization of Robot State with Mobile Virtual Reality

Peter Amstutz and Andrew H. Fagg

Department of Computer Science

University of Massachusetts

Amherst, Massachusetts 01003

{amstutz, fagg}@cs.umass.edu

March 7, 2002

Abstract

With the deployment of large, distributed networks
of cameras and other sensors, it is becoming neces-
sary to also address the issue of how to effectively
present the large volume of gathered information to
a user. One approach to this problem is to summa-
rize the information gathered by these sensors using
a three-dimensional, virtual environment which en-
ables a user to engage her own natural abilities to
absorb the spatial information inherent in the data
streams. Tasks that require a user to have access
to this information while in the field (e.g., search
and rescue) point toward the need for portable so-
lutions to this problem. This paper presents a vir-
tual/augmented reality architecture that has been ex-
plicitly designed for use with a fully-portable, wear-
able computing system. A critical component of this
system is a network-based mechanism for the repre-
sentation of virtual objects and the live communica-
tion of changes in their state to users located else-
where on the network. By presenting virtual objects
in a uniform manner over the network, it becomes
easy to construct new dynamic, virtual environments
that reflect the state of robots or humans within the
real environment. We demonstrate the utility of the
architecture through several robot and human track-
ing examples.

1 Introduction

Widely distributed sensor networks are becoming
commonplace in our environments. Web-available
cameras allow anyone with an Internet connection to
peek in real-time into office spaces, national parks,
and sporting events; security guards have access to
tens or hundreds of cameras; and robot explorers
carry cameras and other sensors into dangerous or
out-of-reach areas. However, the individual sensors

generally provide constrained viewpoints from which
to experience these locations. Furthermore, there
is often very little information that makes explicit
the spatial relationship between the different sen-
sors. These difficulties limit the ability of the user
to immerse herself in the experience provided by the
space, to construct coherent models of the spatial ge-
ometry, and to make real-time, life-critical decisions.
One approach to solving this problem is to synthesize
a three-dimensional virtual experience from the live
sensor streams.

Many of the application areas also require access
to this real-time information while the user is on
the move. For example, security guards on patrol
need access to information about individuals moving
within a building; and search and rescue personnel
located in the field require access to summaries of
survivor and hazard data gathered by large numbers
of robots that are assisting in the efforts. These types
of tasks have led us to focus on solutions that allow
full mobility of a user.

In order to construct such a system for the three-
dimensional presentation of distributed, live sensory
data, a wide variety of problems must be solved.
First, individual sensory processing systems must be
capable of extracting the information of interest (for
example, the presence of a nearby moving object).
Second, information from groups of sensors must be
fused, taking into account the relative (and possibly
dynamic) positions of the sensors, in order to com-
pute estimates of the three dimensional location of
the features of interest. Third, the data that is gath-
ered must be communicated in some form to the mo-
bile computers that are carried by users, taking into
account bandwidth limitations. Finally, the informa-
tion must be rendered within an egocentric frame of
reference at a video frame rate such that virtual ob-
ject movements on a head-mounted-display (HMD)
correspond in a convincing manner to the movements



Amstutz & Fagg; Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’02) 2

of the user’s head.

In this work, we leverage ongoing work at UMass in
the development of smart spaces. Containment units

provide the organizational mechanism by which mul-
tiple sensors (including visual, thermal, and acoustic
sensors) are marshaled together in a robust manner
in order to provide continuous tracking of a subject
throughout the smart space [1, 2]. High level sensory
state (including the position of the tracked subject)
is made available through a JINI service, thus en-
abling access to the information by a wide variety of
applications.

This paper describes our approach to construct-
ing a versatile framework for the representation, com-
munication, and rendering of dynamic, three dimen-
sional object state information. Virtual objects are
represented in a distributed fashion, with components
possibly spread across multiple computers located on
the network. Objects may represent volumetric prim-
itives (e.g., boxes, spheres and meshes) or may consti-
tute collections of objects. Live sensory data is rep-
resented through the real-time update of the position
or other state of these objects. Application programs
with an interest in specific objects register this inter-
est with the hosting server. As object state is up-
dated, the server communicates these state changes
through an XML-based protocol. The three dimen-
sional rendering of the virtual environments is ac-
complished using a fully-mobile, wearable computer
equipped with a HMD, a head orientation sensor, and
wireless networking capability.

2 Previous Work

Mobile virtual and augmented reality has been the
focus of several wearable computing-based research
efforts. Feiner et al. demonstrated a fully portable
implementation of an augmented reality system for a
tour guide task [3]. This system relied on the use
of GPS/dGPS, a digital compass, and tilt sensors
to infer the head pose of the user. Three dimen-
sional textual information was superimposed on top
of the user’s field of view in real time as the head
pose changed, thus simulating the existence of the
text within the real world.

Starner et al. and Jebara et al. described the use of
augmented reality for constructing tutoring systems
for copy machine maintenance and billiards play-
ing [4, 5]. In both examples, three dimensional graph-
ical objects were painted on top of images captured
with a stereo camera pair. These images were then
presented to the user using an opaque stereo display.
The alignment of the virtual objects with the cap-

tured view was accomplished through the applica-
tion of image processing techniques to identify land-
marks in the images. Although the non-see-through
display eliminates the problem of calibration between
the cameras and the HMD, this work required the use
of off-board computation for the image processing.

Foxlin and Harrington introduced a wearable com-
puter interface that relied on a head tracking system
to scroll the viewport of HMD through a space of win-
dows that surrounded the user [6]. Their system uti-
lized a set of gyroscopic sensors that were corrected
by a compass and inclinometers to determine head
orientation. A sonar-based sensor was used to deter-
mine the position of the user’s hand relative to the
head. This mechanism allowed the user to direct the
position of the cursor in three dimensions using hand
movements.

Gibson and Murta have explored the use of re-
flection mapping, light sourcing and shadowing ex-
tracted from the real-world environment to better in-
tegrate synthetic objects into a fixed-frame scene [7].
Their system is able to render fairly complex models
at 10 FPS, but requires an SGI Onyx2 workstation
to do so.

3 A Network-Distributed Rep-

resentation for Virtual Envi-

ronments

The focus of this work is the design of a network-
distributed object system that facilitates the repre-
sentation and dissemination of sensor-driven virtual
environments. At one end of the network are sensors
which may be anything from complex autonomous
robots to simple, fixed-location cameras. This net-
work also includes the visualization platform imple-
mented on a wearable computer which must commu-
nicate with the sensor system, extract information
and present it to the user in an intuitive, graphical
manner.

For ease of explanation we will utilize an il-
lustrative example: the network-accessible, three-
dimensional visualization of the state of the UMass
robotic torso (figure 1). The torso consists of a pair
of seven-degree-of-freedom jointed arms, each with
a three-fingered hand (the hands are not presently
modeled in the visualization). The joint angle infor-
mation is used to update the positional state of the
3D model, which may be accessed by any machine on
the network.

In our system, components such as data sources,
processing nodes, models, and user interfaces can be



Amstutz & Fagg; Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’02) 3

Figure 1: The virtual representation of the arm mir-
rors, in real time, the position of the real arm. The
visualization can be performed on any computer with
access to the network.

freely distributed to the various nodes of a network.
For example, the workstation that provides the user
interface and 3D rendering could be located right
next to the robot, across campus, or (as we have
done) a free-roaming wearable computer utilizing a
wireless LAN. This allows for the components of the
system to be located for the convenience of imple-
mentation. The particular software that ties these
components together that we have developed is the
Virtual Object System, a distributed object system
designed to support (among other things) multi-user
Virtual Reality (VR) applications.

3.1 Virtual Object System Goals

One of the most important aspects of the design of
a complex system is the ability to reduce the sys-
tem into appropriately-simple conceptual units. A
very well-known example is the Unix philosophy of
“everything is a file.” The fundamental abstrac-
tion of the system is sequences of bytes which al-
low read/write operations. Basic files and directo-
ries are rather static and uninteresting; however fifos,
devices, Unix domain sockets and /proc file system
found on Linux and other Unices are all examples
of ways in which file system objects can actually be
quite dynamic and interactive, while still being like a
normal file in various ways (read/write operations are
the same, permission bits and ownership apply, etc.)
Crucial to the success of this idea is the fact that
everything exists in a single structured hierarchical
name space: at the very least one can inspect or ma-
nipulate anything with simple command-line tools.
By comparison, conventional Remote Procedure Call
or Remote Method Invocation systems generally do
not impose this structure on the objects under their
control. On the other extreme, network files systems
obviously impose the file system organization on their

file objects, but generally lack the notion of sending
arbitrary messages to those objects. It is the desire
for this pervasive structure inspired by file systems
that constitutes one design goal for the Virtual Ob-
ject System (VOS).

This design goal is important because hierarchi-
cal structures are fundamental to modeling of three-
dimensional environments and the objects contained
therein. Recall the robot arm: the three-dimensional
position of the wrist in the absolute coordinate frame
is determined by the position of the joints that pre-
cede it in the kinematic chain. Since this computa-
tion is easily expressed by the composition of a series
of homogeneous transformations, we make this com-
putation implicit in the hierarchical structure of the
object name space.

A second design goal is relative simplicity and gen-
erality of the actual network protocol. This is mea-
sured in terms of human readability and ease of writ-
ing simple, dedicated-purpose scripts to manipulate
the objects. For comparison, HTTP passes this test
extremely well. To retrieve a URL, all one has to do
is send a “GET” method with the path in question
to the server, and the contents of that URL “object”
will be returned. Common Object Request Broker
Architecture (CORBA)[8] is a very commonly used
distributed architecture typically based on a binary
protocol that requires at the very least that one gen-
erate stubs from an Interface Design Language (IDL)
specification and link against an Object Request Bro-
ker (ORB). In contrast, our protocol, being XML-
based, should make this sort of rapid development
possible. Another XML protocol, XML-RPC [9], is
trivial in the extreme which makes rapid development
easy but doesn’t specify much beyond the most basic
message syntax. Simple Object Access Protocol[10],
also an XML-based protocol, does not have any sort
of implicit object structure either.

In the sections that follow, we illustrate the design
of our virtual object system in the context of real-
time visualization of the current configuration of the
UMass Torso.

3.2 Virtual Object System Design

The virtual object system is a distributed object sys-
tem which provides services for dispatching of mes-
sages between objects in a location-independent man-
ner. Messages express all communication between ob-
jects of the system. Unlike most other systems, how-
ever, the naming scheme imposes an explicit notion of
standard, hierarchical interconnections between ob-
jects. Specifically, a virtual object (henceforth re-
ferred to as a Vobject) is defined by the following



Amstutz & Fagg; Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’02) 4

properties:

• It is bound to a site (described below) and has
a site-unique name;

• It has a list of types which define its supported
interfaces as well as other attributes;

• It has a set of one or more parent Vobjects (the
site is always a parent);

• It may have an ordered, associative list of child
Vobjects; and

• It may send or receive messages to/from any
other Vobject.

A site is a Vobject which serves as a bridge be-
tween the Vobject system and the underlying (gen-
erally socket-based) network layer (see figure 2). It
provides a point (such as an open port) by which the
Vobjects of the site are accessible. The site accepts
messages on behalf of its hosted Vobjects and redi-
rects those messages to their proper targets. Every
Vobject must be bound to a site; this simply means
that the Vobject is an immediate child of that site in
addition to any other structural (parent/child) infor-
mation that Vobject may have.

The type information associated with a Vobject
describes the syntax and semantics of messages this
Vobject may receive and generate. This is based on
the notion in object-oriented programming of inter-
faces and method signatures. All Vobjects support
a common interface which allows for the querying
and changing of the information which is fundamen-
tal to all Vobjects listed above. For example, the
main object types that make up the robotic arm con-
sist of “object3d”, “object3d.box” and “property.”
Vobjects of type “object3d” support generalized op-
erations that can be performed on anything that can
be manipulated in three dimension (translation, ro-
tation, and scaling). Vobjects of type “object3d.box”
represent a box or rectangular prism and (unlike the
amorphous “object3d” type) suggest a way to visu-
alize this object in three dimensions. Being a sub-
class of “object3d”, “object3d.box” supports the op-
erations of “object3d” as well. Finally the “prop-
erty” type is an extremely common type specifying
a simple interface to access some store of data. The
usage of this data is determined by the contextual
name given by their parent (explained below). The
robot arm example uses properties to store the posi-
tion (a 3-element vector) and orientation (a rotation
matrix) of the object relative to the parent object; it
also stores information texture which is mapped onto
the surface of the 3D primitive.

a

c

d e
local

remote

b

a

b c

d e
local

remote

c

b

d

parent child

e a

a

b c

d e
local

remote

site 2 site 3

site 1

a

b c

d e

site 2 owns object c site 3 owns objects b and d

site 1 owns objects a and ethe tree

Figure 2: A
graphical exam-
ple of how the
objects on vari-
ous sites might
interconnect.
Objects which
are distributed
among several
sites can be
linked together
to form a tree
structure.

The parent set is the set of links to Vobjects of
which this Vobject is a child. Note that the us-
age “parent” and “child,” while derived from con-
ventional terminology for tree structures, does not
actually mean this structure follows the strict def-
inition of a tree. It is actually a general directed
graph. As such, the edges (links) between nodes (ob-
jects) are bidirectional, but asymmetric. Edges are
described with the parent-child relation tuple. This
tuple stores the parent object, the child Vobject, the
child’s position in the parent, and the child’s contex-
tual name in the parent.

The child Vobject list is an ordered, associative list
of links to other Vobjects. Each child Vobject may be
addressed by its position in the list or by contextual
name. Each Vobject’s child list is a separate context.
The contextual name is simply an alias, similar to a
symbolic link, which supplies some information about
the purpose of the child in the context of the parent.
For example, consider a Vobject which represents a
3D volume such as the forearm of the robotic arm.
It has, as children, two Vobjects which themselves
contain information about properties such as position
and orientation.

Slash-delimited paths which should be intu-
itive from file name and URL syntax is used
to address Vobjects, such as the path go-
ing all the way from the world object, along
the kinematic chain, to the robot arm’s hand:
“/world/robotarm/shoulder/elbow/wrist/hand.”
This makes it very easy to browse the object tree in
the same fashion one might browse a file system.



Amstutz & Fagg; Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’02) 5

<message length=“222”
to=“vop://zarya:4234/wrist/orientation”
from=“vop://interreality.org:4233”
method=“property-replace”
nonce=“262679938”>

<data>0.286476 -0.347896 -0.517211</data>
<datatype>x-3tuple-float</datatype>

</message>

Figure 3: An example message changing the orienta-
tion of the robot’s wrist. The method designates the
operation to be performed on the designated object;
the nonce is a unique message identifier.

3.3 Network Protocol

When Vobjects exist in the same process — that is, a
thread of control and the associated memory within
an operating system of a single machine — method
invocations are made directly with no intermediate
packaging of parameters of the method call into a
message or network packet. When a Vobject exists
over the network, however, the method call will be
made through a piece of code called a stub. A stub
simply converts the calling parameters of a method
into the fields of a message. Unlike other RPC sys-
tems there is presently no interface design language,
so stubs must be coded by hand. However, an ad-
vantage of this is that it becomes much easier to in-
clude code which may streamline message process-
ing or provide caching logic. If necessary, the stub
will send a message to the remote Vobject and wait
for a reply. Because these stubs separate interface
from implementation, it also becomes useful for code
reuse, for some stubs can be written in terms of other
Vobject types, or provide additional logic for that
Vobject. This has proven to be especially useful in
implementing A3DL (discussed below).

The underlying protocol used between sites is
XML-based, sent over TCP/IP sockets. Messages are
parsed using a flex and bison based parser. Figure 3
is an example of changing the value of a property. In
this case, the orientation of the robot’s wrist is being
changed; the contents of the property are the Euler
angles of the transform with respect to the enclosing
coordinate frame.

4 A Wearable Computer Inter-

face for 3D Environments

4.1 Rendering of the 3D Environ-

ments

Using this Vobject system as a basis, we have de-
veloped a prototype API for describing 3D virtual
objects. Because Vobjects may be arbitrarily dis-
tributed about the network, the world is constructed
of the union of many Vobjects collected from vari-
ous nodes of the network. In designing distributed
systems, one important principle is that of placing
specialized processing as close as possible to the data
source. This is generally convenient for the imple-
mentation or specialization of the Vobjects, as well as
being more robust than the alternative which would
force the raw data to be delivered to and processed
entirely by a centralized rendering system.

For our arm example, the set of Vobjects which
represent the arm consist of a homogeneous trans-
form for each joint and the attached geometry rep-
resenting the upper arm, forearm and hand. These
Vobjects exist on a workstation which is attached to
the robot controller. Other aspects of the 3D environ-
ment (such as the enclosing walls of the room) exist
on another, separate server. A third (wearable) com-
puter performs the actual rendering and presents the
user interface. Because the Vobjects modeling the
robot arm are hosted independently of the enclos-
ing world, they may join and leave that world (and
hence appear/disappear from the visualization) with-
out disturbing any other elements of that world. This
also allows the object to appear in multiple worlds.

To facilitate the development of both the actual
rendering software as well as clients which make use
of 3D Vobjects (independent of rendering), we have
developed an Abstract 3D Layer (A3DL). This is a
simple interface for representing and manipulating
3D Vobjects. Using this API, the robot presents the
geometric model in terms of volumetric primitives (to
represent the physical parts of the arm) and homo-
geneous transforms (to represent their spatial rela-
tionships). The robot controller itself knows nothing
about the actual rendering process – it simply ex-
ports a geometric representation that captures the
arm’s spatial state. The implementation of A3DL
for a specific 3D engine becomes primarily a process
of filling in the necessary back-end code to represent
the Vobjects in the engine that is being used. For
our implementation, we use the Crystal Space 3D
engine[11].



Amstutz & Fagg; Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’02) 6

4.2 The Wearable Computer Plat-

form

One design constraint has been the goal of imple-
menting a fully mobile system. One major factor in
the development of many virtual reality systems is
in the specialized hardware required. We elected to
deploy our system on the Xybernaut wearable com-
puter, which is a commercial product. The Xyber-
naut is a complete, self-contained Intel-based system
packaged into a belt or vest form-factor. The CPU is
a 200MHz mobile Pentium with 192 MB RAM and
a 4 GB hard disk. The operating system is Red Hat
Linux. The HMD is based on a 640x480 color LCD; a
concave mirror is positioned to reflect the display im-
age toward one eye of the wearer. The field of vision
covered is approximately 30◦. Although in practice
this display leaves much to be desired in terms of
contrast and focus, it is very easy to switch the mir-
ror for a semi-silvered (or semi-transparent) mirror.
This allows one to see through the mirror as well as
see the reflection, which makes possible the idea of
“augmented reality” (overlaying a virtual world onto
the real one, appearing to match up with real features
of the real world). Finally, the wearable operates on
a Lithium-ion battery and uses 802.11b wireless eth-
ernet. The battery presently lasts about 2.5 hours
with moderate use. Despite being a relatively slow
200MHz CPU and having no extra hardware support
for 3D rendering, we are able to generate 10 frames
per second entirely with software-based rendering.

One of the basic features of a virtual reality sys-
tem should be the ability to walk about the virtual
environment freely and for the rendering system to
immediately respond to what the user looks at —
that is, change the viewing direction based on what
direction the user’s head is pointing. For tracking
head orientation, we use an Intersense IS-300 gy-
roscopic tracker [6]. This device uses 3-axis gyro-
scopes measuring rotational acceleration, along with
geomagnetic and gravity sensors to measure compass
heading and pitch/roll of the head. The device is
attached to the headset of the wearable computer.
Filtered head orientation information is delivered via
a serial port at a rate of up to 50 Hz.

Depending upon the application and the user con-
text, the Cartesian position of the virtual viewpoint
is translated using one of several approaches. First,
the user may physically drive the forward/backward
movement of the viewpoint by pressing buttons on a
keyboard. Second, the position of the user may be
sensed using either services provided by the UMass
smart room [1, 2] or a GPS receiver. The smart room
has been equipped with panoramic and pan-tilt-zoom

cameras which track the movement of people and
robots within the room. Unlike many localization
systems which rely on magnetic or sonar sensors, this
camera-based system is entirely passive and can be
very quickly set up and calibrated. This tracking sys-
tem provides an estimate of 2D position within the
room at a rate of 9 Hz, with an error standard devi-
ation of 30 cm.

5 Example Applications

We have constructed three examples to demonstrate
the utility of our mobile virtual reality system. The
first example, using the robotic torso, has been dis-
cussed previously. However, a note on the general
ease of implementation: the code specific to the
robot representation consists of a total of less than
150 lines of C++. Nearly all of this code is ded-
icated toward the creation and initialization of the
arm-specific transformations and 3D volumetric Vob-
jects. The program then executes forever in a loop,
polling joint angles every 150 milliseconds. Because
the polling is done once every 150 ms, the worst-case
lag from real movement to response on the screen is
on the order of 250 ms at the 10 FPS screen rate.

The second example application augments the
user’s field of view with information about subjects
moving within a nearby room. In this case, the user
with the wearable computer is positioned in a known
location outside of the smart room. A 3D model
of the environment is made available to the wear-
able computer by the world server depicted in fig-
ure 4. The world Vobject contains a variety of 3D
Vobjects, including doors, desks, and an avatar that
corresponds to the tracked subject. Each Vobject in
the model is represented using a set of properties,
including position and orientation. In the case of
desks and doors, these properties are stored locally
to the server. However, as in the case of the avatar
position in this example, the locally stored Vobject
may be replaced with a reference to a Vobject that is
made available by other servers. In our example, this
position information is made available by the smart
room tracking system, but could equally be provided
by any other tracking system (including a GPS-based
system).

Figure 5A shows an example view from the wear-
able computer. Because the virtual and real worlds
are approximately aligned, the user has the impres-
sion of seeing the subject through a transparent wall.
Although the subject is currently rendered as a mono-
lith, it is possible to substitute a more interesting,
subject-specific avatar (represented as general mesh



Amstutz & Fagg; Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’02) 7

top

pos

[...]

GPS server

top

pos

[...]

Smart room
tracking server

world

desk_2door_1 avatar

[...] [...]

pos
orient

mesh
orient

[...]

world server

pos

list
polygon

children

...

...

Figure 4: Vobjects hierarchy for the representation of
the virtual environment in the X-ray vision example.
Vobject properties may be stored and manipulated
by the local server or may reference objects exported
by remote servers.

objects).

The third experiment involves the monitoring of a
set of robots during a mapping and search task. In
the current instantiation, a mobile robot is placed
within a maze and is asked to autonomously map
the space (see figure 5B). The robot communicates
via a radio link its own estimated position, as well
as the position of any obstacles that it encounters
to to a base station. The Vobject server for this
robot combines the robot position tracking with the
robot’s maze-discovery information to create a three-
dimensional geometric model. This model is updated
in real time with the robot’s current position and the
map that it has thus far discovered. As with the first
experiment, the actual rendering is done on the wear-
able computer based on the dynamically-changing ge-
ometric description given by the base station. Be-
cause the user’s head position is tracked by the sen-
sors in the smart room, the user is able to “walk
around” the geometric model that has been created.

A

B

Figure 5:
(A) The user
view of the
X-Ray vision
demonstra-
tion, and (B)
tracking the
movements of
a robot as it
maps a set of
rooms.

6 Conclusions and Future

Work

Visualization of robot state through augmented and
virtual reality systems will become one of the key
bases for human interaction with large numbers of
robots and sensors. In this paper, we have presented
some initial steps toward developing a mobile virtual
reality system for visualization of state information.
Our Virtual Object System addresses the issues of
presenting a uniform interface for network-available
data with a particular focus on the distributed repre-
sentation of hierarchical, three-dimensional models.
These models may be updated as a function of live
data sources and rendered in real time for presenta-
tion to remote users. Furthermore, the system has
been designed with limited network and computa-
tional resources in mind, allowing for the presenta-
tion of the dynamic virtual space in a virtual reality
format to a user equipped with a fully-mobile, wear-
able computer.

On the technical side, our immediate focus is on the
development of more complex 3D models for the rep-
resentation of spaces involving multiple rooms and
large numbers of objects. We are also designing
avatars which will be capable of expressing subject
state information, including subject identity and cur-
rent activity.

We are also examining issues involving the interac-
tion of the user with the available sensory resources.



Amstutz & Fagg; Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’02) 8

In a search and rescue task, the virtual/augmented
reality interface can make survivor and hazard infor-
mation available to the field user on a wide range
of spatial scales – from summary views of an en-
tire building down to the what has been discovered
around the corner from the user. In addition, the field
user should be able to make high level requests of the
robot/sensor network using intuitive interfaces (such
as pointing toward a door), with the necessary re-
sources being automatically marshaled to satisfy the
requests.

Finally, we are examining the presentation of both
static and live visual imagery within the virtual en-
vironments. One important issue to be addressed is
that of conveying to the user a sense of the spatial re-
lationships between the data taken by the disparate
sensors. This must be accomplished in an informative
and timely manner and may present a trade-off with
presentation quality. The virtual environment allows
the user to navigate amongst the data collected by
these sensors and to perform queries from individ-
ual sensors for high quality images or even live image
streams. Through this interface, we hope to leverage
the user’s own ability to construct internal cognitive
maps of three dimensional spaces in order to “fill in”
details not available from the sensors.

7 Acknowledgments

Preparation of this manuscript was supported in part
by NSF #EIA 9703217, DARPA/ITO #DABT63-99-
1-0022 (SDR) and DARPA/ITO
#DABT63-99-1-0004 (MARS). The authors wish to
thank T. Reed Hedges, Joshua Gay, James Davis,
Michael Piantedosi, Jack Wileden, and Amy McGov-
ern for their valuable comments during the develop-
ment of this work and the writing of this manuscript.
The authors wish to also thank Xybernaut Corpora-
tion for their support of this work.

The most recent version of the Virtual Object Sys-
tem is available for download from:

www.interreality.org

References

[1] D. Karuppiah, P. Deegan, E. Araujo, Y. Yang,
G. Holness, Z. Zhu, B. Lerner, R. Grupen, and
E. M. Riseman, “Software mode changes for con-
tinuous motion tracking,” in Proceedings of the

International Workshop on Self Adaptive Soft-

ware, 2000.

[2] G. Holness, D. Karuppiah, S. Uppala, S. C. Rav-
ela, and R. A Grupen, “Service paradigm for re-
configurable agents,” in Proceedings of the 2nd

Workshop on Infrastructure for Agents, MAS,

and Scalable MAS, May 2001.

[3] S. Feiner, B. MacIntyre, T. Höllerer, and
A. Webster, “A touring machine: Prototyping
3d mobile augmented reality systems for explor-
ing the urban environment,” in Proceedings of

the First International Symposium on Wearable

Computers, 1997.

[4] T. Starner, S. Mann, B. Rhodes, J. Levine,
J. Healey, D. Kirsch, R. W. Picard, and A. Pent-
land, “Augmented reality through wearable
computing,” Presence, vol. 6, no. 4, Fall 1997.

[5] T. Jebara, C. Eyster, J. Weaver, T. Starner,
and A. Pentland, “Stochasticks: Augmenting
the billiards experience with probabilistic vision
and wearable computers,” in Proceedings of

the IEEE International Symposium on Wearable

Computers, October 1997.

[6] E. Foxlin and M. Harrington, “WearTrack: A
self-referenced head and hand tracker for wear-
able computers and portable VR,” in Proceed-

ings of the Fourth International Symposium on

Wearable Computers, 2000.

[7] S. Gibson and A. Murta, “Interactive rendering
with real-world illumination,” in Proceedings of

the 11th Eurographics Workshop on Rendering,
June 2000.

[8] “Common object request broker architecture
(CORBA) 2.5 specification,” Tech. Rep., Ob-
ject Management Group, 2001.

[9] E. Kidd, “XML-RPC HowTo,” Tech.
Rep., 2001, xmlrpc-c.sourceforge.net/xmlrpc-
howto/xmlrpc-howto.html.

[10] D. Box, D. Ehnebuske, G. Kakivaya, A. Lay-
man, N. Mendelsohn, H. F. Nielsen, S. Thatte,
and D. Winer, “Simple object access protocol
(SOAP) 1.1,” Tech. Rep. 08, W3C, May 2000,
www.w3.org/TR/SOAP.

[11] J. Tyberghein, A. Zabolotony, E. Sunshine,
T. Hieber, S. Galbraith, M. Geisse M. Voase an
S. Humphreys, A. Pfaffe, M. Ewert, R. Bate,
G Haussmann, and P. Wyett, “Crystal space
manual,” Tech. Rep. 19.dev, 2001, crys-
tal.sourceforge.net/docs/online/manual/.


